Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NeutronHPorLFissionData.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// 05-11-21 NeutronHP or Low Energy Parameterization Models
28// Implemented by T. Koi (SLAC/SCCS)
29// If NeutronHP data do not available for an element, then Low Energy
30// Parameterization models handle the interactions of the element.
31// 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
32//
33
35#include "G4SystemOfUnits.hh"
36#include "G4Neutron.hh"
37#include "G4ElementTable.hh"
38#include "G4NeutronHPData.hh"
39
40#include "G4PhysicsVector.hh"
41
42
44{
45 SetMinKinEnergy( 0*MeV );
46 SetMaxKinEnergy( 20*MeV );
47
48 ke_cache = 0.0;
49 xs_cache = 0.0;
50 element_cache = NULL;
51 material_cache = NULL;
52// BuildPhysicsTable(*G4Neutron::Neutron());
53}
54
56{
57// delete theCrossSections;
58}
59
61 G4int /*Z*/ , G4int /*A*/ ,
62 const G4Element* element ,
63 const G4Material* /*mat*/ )
64{
65 G4double eKin = dp->GetKineticEnergy();
66 if ( eKin > GetMaxKinEnergy()
67 || eKin < GetMinKinEnergy()
68 || dp->GetDefinition() != G4Neutron::Neutron() ) return false;
69 if ( unavailable_elements->find( element->GetName() ) != unavailable_elements->end() ) return false;
70
71 return true;
72}
73
75 G4int /*Z*/ , G4int /*A*/ ,
76 const G4Isotope* /*iso*/ ,
77 const G4Element* element ,
78 const G4Material* material )
79{
80 if ( dp->GetKineticEnergy() == ke_cache && element == element_cache && material == material_cache ) return xs_cache;
81
82 ke_cache = dp->GetKineticEnergy();
83 element_cache = element;
84 material_cache = material;
85 G4double xs = GetCrossSection( dp , element , material->GetTemperature() );
86 xs_cache = xs;
87 return xs;
88 //return GetCrossSection( dp , element , material->GetTemperature() );
89}
90
92:G4VCrossSectionDataSet("NeutronHPorLFissionXS")
93{
94 theFissionChannel = pChannel;
95 unavailable_elements = pSet;
96
97 SetMinKinEnergy( 0*MeV );
98 SetMaxKinEnergy( 20*MeV );
99
100 ke_cache = 0.0;
101 xs_cache = 0.0;
102 element_cache = NULL;
103 material_cache = NULL;
104}
105
106/*
107G4bool G4NeutronHPorLFissionData::IsApplicable(const G4DynamicParticle*aP, const G4Element* anElement)
108{
109 G4bool result = true;
110 G4double eKin = aP->GetKineticEnergy();
111 if(eKin>20*MeV||aP->GetDefinition()!=G4Neutron::Neutron()) result = false;
112 if ( unavailable_elements->find( anElement->GetName() ) != unavailable_elements->end() ) result = false;
113 return result;
114}
115*/
116
117
118
120{
121 if( &aP!=G4Neutron::Neutron() )
122 throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
123}
124
125
126
128{
129 if(&aP!=G4Neutron::Neutron())
130 throw G4HadronicException(__FILE__, __LINE__, "Attempt to use NeutronHP data for particles other than neutrons!!!");
131// G4cout << "G4NeutronHPorLFissionData::DumpPhysicsTable still to be implemented"<<G4endl;
132}
133
134
135
136#include "G4Nucleus.hh"
137#include "G4NucleiProperties.hh"
138#include "G4Neutron.hh"
139#include "G4Electron.hh"
140
142GetCrossSection(const G4DynamicParticle* aP, const G4Element*anE, G4double aT)
143{
144 G4double result = 0;
145 if ( anE->GetZ() < 90 ) return result;
146
147// G4bool outOfRange;
148 G4int index = anE->GetIndex();
149
150 // prepare neutron
151 G4double eKinetic = aP->GetKineticEnergy();
152 G4ReactionProduct theNeutron( aP->GetDefinition() );
153 theNeutron.SetMomentum( aP->GetMomentum() );
154 theNeutron.SetKineticEnergy( eKinetic );
155
156 // prepare thermal nucleus
157 G4Nucleus aNuc;
158 G4double eps = 0.0001;
159 G4double theA = anE->GetN();
160 G4double theZ = anE->GetZ();
161 G4double eleMass;
162 eleMass = ( G4NucleiProperties::GetNuclearMass(static_cast<G4int>(theA+eps), static_cast<G4int>(theZ+eps))
164
165 G4ReactionProduct boosted;
166 G4double aXsection;
167
168 // MC integration loop
169 G4int counter = 0;
170 G4double buffer = 0;
171 G4int size = G4int(std::max(10., aT/60*kelvin));
172 G4ThreeVector neutronVelocity = 1./G4Neutron::Neutron()->GetPDGMass()*theNeutron.GetMomentum();
173 G4double neutronVMag = neutronVelocity.mag();
174 while(counter == 0 || std::abs(buffer-result/std::max(1,counter)) > 0.03*buffer)
175 {
176 if(counter) buffer = result/counter;
177 while (counter<size)
178 {
179 counter ++;
180 G4ReactionProduct aThermalNuc = aNuc.GetThermalNucleus(eleMass, aT);
181 boosted.Lorentz(theNeutron, aThermalNuc);
182 G4double theEkin = boosted.GetKineticEnergy();
183 //aXsection = (*((*theCrossSections)(index))).GetValue(theEkin, outOfRange);
184 aXsection = theFissionChannel[index].GetXsec( theEkin );
185 // velocity correction.
186 G4ThreeVector targetVelocity = 1./aThermalNuc.GetMass()*aThermalNuc.GetMomentum();
187 aXsection *= (targetVelocity-neutronVelocity).mag()/neutronVMag;
188 result += aXsection;
189 }
190 size += size;
191 }
192 result /= counter;
193 return result;
194}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
double mag() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
G4double GetZ() const
Definition: G4Element.hh:131
size_t GetIndex() const
Definition: G4Element.hh:182
const G4String & GetName() const
Definition: G4Element.hh:127
G4double GetN() const
Definition: G4Element.hh:134
G4double GetTemperature() const
Definition: G4Material.hh:181
G4double GetXsec(G4double energy)
G4bool IsIsoApplicable(const G4DynamicParticle *, G4int, G4int, const G4Element *, const G4Material *)
void BuildPhysicsTable(const G4ParticleDefinition &)
void DumpPhysicsTable(const G4ParticleDefinition &)
G4double GetIsoCrossSection(const G4DynamicParticle *, G4int, G4int, const G4Isotope *, const G4Element *, const G4Material *)
G4double GetCrossSection(const G4DynamicParticle *, const G4Element *, G4double aT)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4ReactionProduct GetThermalNucleus(G4double aMass, G4double temp=-1) const
Definition: G4Nucleus.cc:130
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMaxKinEnergy(G4double value)
void SetMinKinEnergy(G4double value)
#define buffer
Definition: xmlparse.cc:611