Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GlauberGribovCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// author: V. Grichine
27//
28// 17.07.06 V. Grichine - first implementation
29// 22.01.07 V.Ivanchenko - add interface with Z and A
30// 05.03.07 V.Ivanchenko - add IfZAApplicable
31// 11.06.10 V. Grichine - update for antiprotons
32// 10.11.11 V. Grichine - update for kaons
33
35
37#include "G4SystemOfUnits.hh"
38#include "G4ParticleTable.hh"
39#include "G4IonTable.hh"
41#include "G4HadronNucleonXsc.hh"
42
43// factory
45//
47
48///////////////////////////////////////////////////////////////////////////////
49
50const G4double G4GlauberGribovCrossSection::fNeutronBarCorrectionTot[93] = {
51
521.0, 1.0, 1.118517e+00, 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00,
531.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00,
541.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00,
551.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00,
561.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00,
571.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00,
581.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00,
591.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00,
601.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00,
611.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00,
621.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00,
631.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00,
641.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00,
651.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00,
661.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00,
671.037075e+00, 1.034721e+00
68
69};
70
71const G4double G4GlauberGribovCrossSection::fNeutronBarCorrectionIn[93] = {
72
731.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00,
741.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00,
751.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00,
761.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00,
771.131515e+00, 1.130338e+00, 1.134171e+00, 1.139206e+00, 1.141474e+00, 1.142189e+00,
781.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00,
791.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00,
801.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00,
811.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00,
821.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00,
831.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00,
841.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00,
851.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00,
861.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00,
871.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00,
881.046435e+00, 1.042614e+00
89
90};
91
92const G4double G4GlauberGribovCrossSection::fProtonBarCorrectionTot[93] = {
93
941.0, 1.0,
951.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00,
961.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00,
971.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00,
981.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00,
991.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00,
1001.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00,
1011.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00,
1021.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00,
1031.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00,
1041.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00,
1051.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00,
1061.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00,
1071.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00,
1081.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00,
1091.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00,
1101.034720e+00
111
112};
113
114const G4double G4GlauberGribovCrossSection::fProtonBarCorrectionIn[93] = {
115
1161.0, 1.0,
1171.167419e+00, 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00,
1181.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00,
1191.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00,
1201.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00,
1211.130337e+00, 1.134170e+00, 1.139205e+00, 1.141472e+00, 1.142188e+00, 1.140724e+00,
1221.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00,
1231.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00,
1241.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00,
1251.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00,
1261.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00,
1271.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00,
1281.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00,
1291.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00,
1301.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00,
1311.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00,
1321.042613e+00
133
134};
135
136
137const G4double G4GlauberGribovCrossSection::fPionPlusBarCorrectionTot[93] = {
138
1391.0, 1.0,
1401.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00,
1411.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00,
1421.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00,
1431.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00,
1441.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00,
1451.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00,
1461.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00,
1471.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00,
1481.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00,
1491.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00,
1501.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00,
1511.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00,
1521.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00,
1531.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00,
1541.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00,
1551.152974e+00
156
157};
158
159const G4double G4GlauberGribovCrossSection::fPionPlusBarCorrectionIn[93] = {
160
1611.0, 1.0,
1621.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.044495e+00, 1.062622e+00,
1631.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.065100e+00,
1641.070480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00,
1651.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00,
1661.137312e+00, 1.126263e+00, 1.126459e+00, 1.115191e+00, 1.116986e+00, 1.117184e+00,
1671.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00,
1681.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00,
1691.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00,
1701.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00,
1711.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00,
1721.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00,
1731.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00,
1741.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00,
1751.071107e+00, 1.069955e+00, 1.064856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00,
1761.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00,
1771.059658e+00
178
179};
180
181
182const G4double G4GlauberGribovCrossSection::fPionMinusBarCorrectionTot[93] = {
183
1841.0, 1.0,
1851.075927e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00,
1861.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00,
1871.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00,
1881.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00,
1891.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00,
1901.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00,
1911.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00,
1921.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00,
1931.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00,
1941.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00,
1951.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00,
1961.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00,
1971.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00,
1981.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00,
1991.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00,
2001.157267e+00
201};
202
203
204const G4double G4GlauberGribovCrossSection::fPionMinusBarCorrectionIn[93] = {
205
2061.0, 1.0,
2071.140246e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.044514e+00, 1.062628e+00,
2081.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00,
2091.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00,
2101.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00,
2111.138502e+00, 1.127678e+00, 1.127244e+00, 1.116634e+00, 1.118347e+00, 1.118988e+00,
2121.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00,
2131.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00,
2141.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00,
2151.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00,
2161.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00,
2171.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00,
2181.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00,
2191.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00,
2201.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00,
2211.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00,
2221.062699e+00
223
224};
225
226
227//////////////////////////////////////////////////////////////////////////////
228//
229
231 : G4VCrossSectionDataSet(Default_Name()),
232 fUpperLimit(100000*GeV), fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
233 fRadiusConst(1.08*fermi), // 1.1, 1.3 ?
234 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
235 fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
236{
237 theGamma = G4Gamma::Gamma();
238 theProton = G4Proton::Proton();
239 theNeutron = G4Neutron::Neutron();
240 theAProton = G4AntiProton::AntiProton();
241 theANeutron = G4AntiNeutron::AntiNeutron();
242 thePiPlus = G4PionPlus::PionPlus();
243 thePiMinus = G4PionMinus::PionMinus();
244 thePiZero = G4PionZero::PionZero();
245 theKPlus = G4KaonPlus::KaonPlus();
246 theKMinus = G4KaonMinus::KaonMinus();
249 theL = G4Lambda::Lambda();
250 theAntiL = G4AntiLambda::AntiLambda();
251 theSPlus = G4SigmaPlus::SigmaPlus();
252 theASPlus = G4AntiSigmaPlus::AntiSigmaPlus();
253 theSMinus = G4SigmaMinus::SigmaMinus();
255 theS0 = G4SigmaZero::SigmaZero();
257 theXiMinus = G4XiMinus::XiMinus();
258 theXi0 = G4XiZero::XiZero();
259 theAXiMinus = G4AntiXiMinus::AntiXiMinus();
260 theAXi0 = G4AntiXiZero::AntiXiZero();
261 theOmega = G4OmegaMinus::OmegaMinus();
263 theD = G4Deuteron::Deuteron();
264 theT = G4Triton::Triton();
265 theA = G4Alpha::Alpha();
266 theHe3 = G4He3::He3();
267
268 hnXsc = new G4HadronNucleonXsc();
269}
270
271///////////////////////////////////////////////////////////////////////////////////////
272//
273//
274
276{
277 if (hnXsc) delete hnXsc;
278}
279
280////////////////////////////////////////////////////////////////////////////////////////
281
282G4bool
284 G4int Z, G4int /*A*/,
285 const G4Element*,
286 const G4Material*)
287{
288 G4bool applicable = false;
289 // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber();
290 G4double kineticEnergy = aDP->GetKineticEnergy();
291
292 const G4ParticleDefinition* theParticle = aDP->GetDefinition();
293
294 if ( ( kineticEnergy >= fLowerLimit &&
295 Z > 1 && // >= He
296 ( theParticle == theAProton ||
297 theParticle == theGamma ||
298 theParticle == theKPlus ||
299 theParticle == theKMinus ||
300 theParticle == theK0L ||
301 theParticle == theK0S ||
302 theParticle == theSMinus ||
303 theParticle == theProton ||
304 theParticle == theNeutron ||
305 theParticle == thePiPlus ||
306 theParticle == thePiMinus ) ) ) applicable = true;
307
308 return applicable;
309}
310
311////////////////////////////////////////////////////////////////////////////////////////
312//
313// Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to
314// Glauber model with Gribov correction calculated in the dipole approximation on
315// light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model.
316// [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above
317
320 G4int Z, G4int A,
321 const G4Isotope*,
322 const G4Element*,
323 const G4Material*)
324{
325 G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
326 G4double hpInXsc(0.), hnInXsc(0.);
328
329 G4int N = A - Z; // number of neutrons
330 if (N < 0) N = 0;
331
332 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
333
334 if( theParticle == theProton ||
335 theParticle == theNeutron ||
336 theParticle == thePiPlus ||
337 theParticle == thePiMinus )
338 {
339 // sigma = GetHadronNucleonXscNS(aParticle, A, Z);
340
341 sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
342
343 hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
344
345 sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
346
347 hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
348
349 cofInelastic = 2.4;
350 cofTotal = 2.0;
351 }
352 else if( theParticle == theKPlus ||
353 theParticle == theKMinus ||
354 theParticle == theK0S ||
355 theParticle == theK0L )
356 {
357 sigma = GetKaonNucleonXscVector(aParticle, A, Z);
358 cofInelastic = 2.2;
359 cofTotal = 2.0;
360 R = 1.3*fermi;
361 R *= std::pow(G4double(A), 0.3333);
362 }
363 else
364 {
365 sigma = GetHadronNucleonXscNS(aParticle, A, Z);
366 cofInelastic = 2.2;
367 cofTotal = 2.0;
368 }
369 // cofInelastic = 2.0;
370
371 if( A > 1 )
372 {
373 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
374 ratio = sigma/nucleusSquare;
375
376 xsection = nucleusSquare*std::log( 1. + ratio );
377
378 xsection *= GetParticleBarCorTot(theParticle, Z);
379
380 fTotalXsc = xsection;
381
382
383
384 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
385
386 fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
387
388 fElasticXsc = fTotalXsc - fInelasticXsc;
389
390 if(fElasticXsc < 0.) fElasticXsc = 0.;
391
392 G4double difratio = ratio/(1.+ratio);
393
394 fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
395
396
397 // sigma = GetHNinelasticXsc(aParticle, A, Z);
398
399 sigma = Z*hpInXsc + N*hnInXsc;
400
401 ratio = sigma/nucleusSquare;
402
403 fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
404
405 if (fElasticXsc < 0.) fElasticXsc = 0.;
406 }
407 else // H
408 {
409 fTotalXsc = sigma;
410 xsection = sigma;
411
412 if ( theParticle != theAProton )
413 {
414 sigma = GetHNinelasticXsc(aParticle, A, Z);
415 fInelasticXsc = sigma;
416 fElasticXsc = fTotalXsc - fInelasticXsc;
417 }
418 else
419 {
420 fElasticXsc = fTotalXsc - fInelasticXsc;
421 }
422 if (fElasticXsc < 0.) fElasticXsc = 0.;
423
424 }
425 return xsection;
426}
427
428//////////////////////////////////////////////////////////////////////////
429//
430// Return single-diffraction/inelastic cross-section ratio
431
433GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z)
434{
435 G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
437
438 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
439
440 if( theParticle == theProton ||
441 theParticle == theNeutron ||
442 theParticle == thePiPlus ||
443 theParticle == thePiMinus )
444 {
445 sigma = GetHadronNucleonXscNS(aParticle, A, Z);
446 cofInelastic = 2.4;
447 cofTotal = 2.0;
448 }
449 else
450 {
451 sigma = GetHadronNucleonXscNS(aParticle, A, Z);
452 cofInelastic = 2.2;
453 cofTotal = 2.0;
454 }
455 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
456 ratio = sigma/nucleusSquare;
457
458 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
459
460 G4double difratio = ratio/(1.+ratio);
461
462 fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
463
464 if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
465 else ratio = 0.;
466
467 return ratio;
468}
469
470//////////////////////////////////////////////////////////////////////////
471//
472// Return suasi-elastic/inelastic cross-section ratio
473
475GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z)
476{
477 G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
479
480 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
481
482 if( theParticle == theProton ||
483 theParticle == theNeutron ||
484 theParticle == thePiPlus ||
485 theParticle == thePiMinus )
486 {
487 sigma = GetHadronNucleonXscNS(aParticle, A, Z);
488 cofInelastic = 2.4;
489 cofTotal = 2.0;
490 }
491 else
492 {
493 sigma = GetHadronNucleonXscNS(aParticle, A, Z);
494 cofInelastic = 2.2;
495 cofTotal = 2.0;
496 }
497 nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
498 ratio = sigma/nucleusSquare;
499
500 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
501
502 sigma = GetHNinelasticXsc(aParticle, A, Z);
503 ratio = sigma/nucleusSquare;
504
505 fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
506
507 if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
508 else ratio = 0.;
509 if ( ratio < 0. ) ratio = 0.;
510
511 return ratio;
512}
513
514/////////////////////////////////////////////////////////////////////////////////////
515//
516// Returns hadron-nucleon Xsc according to differnt parametrisations:
517// [2] E. Levin, hep-ph/9710546
518// [3] U. Dersch, et al, hep-ex/9910052
519// [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
520
523 const G4Element* anElement)
524{
525 G4int At = G4lrint(anElement->GetN()); // number of nucleons
526 G4int Zt = G4lrint(anElement->GetZ()); // number of protons
527
528 return GetHadronNucleonXsc(aParticle, At, Zt);
529}
530
531/////////////////////////////////////////////////////////////////////////////////////
532//
533// Returns hadron-nucleon Xsc according to differnt parametrisations:
534// [2] E. Levin, hep-ph/9710546
535// [3] U. Dersch, et al, hep-ex/9910052
536// [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
537
540 G4int At, G4int /*Zt*/)
541{
542 G4double xsection;
543
544 //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
545
546 G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ???
547
548 G4double proj_mass = aParticle->GetMass();
549 G4double proj_momentum = aParticle->GetMomentum().mag();
550 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
551
552 sMand /= GeV*GeV; // in GeV for parametrisation
553 proj_momentum /= GeV;
554
555 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
556
557 G4double aa = At;
558
559 if(theParticle == theGamma)
560 {
561 xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525));
562 }
563 else if(theParticle == theNeutron) // as proton ???
564 {
565 xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
566 }
567 else if(theParticle == theProton)
568 {
569 xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
570 // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) );
571 // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) );
572 }
573 else if(theParticle == theAProton)
574 {
575 xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525));
576 }
577 else if(theParticle == thePiPlus)
578 {
579 xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525));
580 }
581 else if(theParticle == thePiMinus)
582 {
583 // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) );
584 xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525));
585 }
586 else if(theParticle == theKPlus)
587 {
588 xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525));
589 }
590 else if(theParticle == theKMinus)
591 {
592 xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525));
593 }
594 else // as proton ???
595 {
596 xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
597 }
598 xsection *= millibarn;
599 return xsection;
600}
601
602
603/////////////////////////////////////////////////////////////////////////////////////
604//
605// Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
606// http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
607
610 const G4Element* anElement)
611{
612 G4int At = G4lrint(anElement->GetN()); // number of nucleons
613 G4int Zt = G4lrint(anElement->GetZ()); // number of protons
614
615 return GetHadronNucleonXscPDG(aParticle, At, Zt);
616}
617
618
619
620
621/////////////////////////////////////////////////////////////////////////////////////
622//
623// Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
624// http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
625// At = number of nucleons, Zt = number of protons
626
629 G4int At, G4int Zt)
630{
631 G4double xsection;
632
633 G4int Nt = At-Zt; // number of neutrons
634 if (Nt < 0) Nt = 0;
635
636 G4double zz = Zt;
637 G4double aa = At;
638 G4double nn = Nt;
639
641 GetIonTable()->GetIonMass(Zt, At);
642
643 targ_mass = 0.939*GeV; // ~mean neutron and proton ???
644
645 G4double proj_mass = aParticle->GetMass();
646 G4double proj_momentum = aParticle->GetMomentum().mag();
647
648 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
649
650 sMand /= GeV*GeV; // in GeV for parametrisation
651
652 // General PDG fit constants
653
654 G4double s0 = 5.38*5.38; // in Gev^2
655 G4double eta1 = 0.458;
656 G4double eta2 = 0.458;
657 G4double B = 0.308;
658
659
660 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
661
662
663 if(theParticle == theNeutron) // proton-neutron fit
664 {
665 xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
666 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
667 xsection += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
668 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
669 }
670 else if(theParticle == theProton)
671 {
672
673 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
674 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
675
676 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
677 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
678 }
679 else if(theParticle == theAProton)
680 {
681 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
682 + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
683
684 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
685 + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
686 }
687 else if(theParticle == thePiPlus)
688 {
689 xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
690 + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2));
691 }
692 else if(theParticle == thePiMinus)
693 {
694 xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
695 + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2));
696 }
697 else if(theParticle == theKPlus || theParticle == theK0L )
698 {
699 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
700 + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
701
702 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
703 + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
704 }
705 else if(theParticle == theKMinus || theParticle == theK0S )
706 {
707 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
708 + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
709
710 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
711 + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
712 }
713 else if(theParticle == theSMinus)
714 {
715 xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
716 - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
717 }
718 else if(theParticle == theGamma) // modify later on
719 {
720 xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
721 + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
722
723 }
724 else // as proton ???
725 {
726 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
727 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
728
729 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
730 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
731 }
732 xsection *= millibarn; // parametrised in mb
733 return xsection;
734}
735
736
737/////////////////////////////////////////////////////////////////////////////////////
738//
739// Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
740// data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
741
744 const G4Element* anElement)
745{
746 G4int At = G4lrint(anElement->GetN()); // number of nucleons
747 G4int Zt = G4lrint(anElement->GetZ()); // number of protons
748
749 return GetHadronNucleonXscNS(aParticle, At, Zt);
750}
751
752
753
754
755/////////////////////////////////////////////////////////////////////////////////////
756//
757// Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
758// data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
759
762 G4int At, G4int Zt)
763{
764 G4double xsection(0);
765 // G4double Delta; DHW 19 May 2011: variable set but not used
766 G4double A0, B0;
767 G4double hpXscv(0);
768 G4double hnXscv(0);
769
770 G4int Nt = At-Zt; // number of neutrons
771 if (Nt < 0) Nt = 0;
772
773 G4double aa = At;
774 G4double zz = Zt;
775 G4double nn = Nt;
776
778 GetIonTable()->GetIonMass(Zt, At);
779
780 targ_mass = 0.939*GeV; // ~mean neutron and proton ???
781
782 G4double proj_mass = aParticle->GetMass();
783 G4double proj_energy = aParticle->GetTotalEnergy();
784 G4double proj_momentum = aParticle->GetMomentum().mag();
785
786 G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
787
788 sMand /= GeV*GeV; // in GeV for parametrisation
789 proj_momentum /= GeV;
790 proj_energy /= GeV;
791 proj_mass /= GeV;
792
793 // General PDG fit constants
794
795 G4double s0 = 5.38*5.38; // in Gev^2
796 G4double eta1 = 0.458;
797 G4double eta2 = 0.458;
798 G4double B = 0.308;
799
800
801 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
802
803
804 if(theParticle == theNeutron)
805 {
806 if( proj_momentum >= 373.)
807 {
808 return GetHadronNucleonXscPDG(aParticle,At,Zt);
809 }
810 else if( proj_momentum >= 10.)
811 // if( proj_momentum >= 2.)
812 {
813 // Delta = 1.; // DHW 19 May 2011: variable set but not used
814 // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
815
816 if(proj_momentum >= 10.)
817 {
818 B0 = 7.5;
819 A0 = 100. - B0*std::log(3.0e7);
820
821 xsection = A0 + B0*std::log(proj_energy) - 11
822 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
823 0.93827*0.93827,-0.165); // mb
824 }
825 xsection *= zz + nn;
826 }
827 else
828 {
829 // nn to be pp
830
831 if( proj_momentum < 0.73 )
832 {
833 hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
834 }
835 else if( proj_momentum < 1.05 )
836 {
837 hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
838 (std::log(proj_momentum/0.73));
839 }
840 else // if( proj_momentum < 10. )
841 {
842 hnXscv = 39.0+
843 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
844 }
845 // pn to be np
846
847 if( proj_momentum < 0.8 )
848 {
849 hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
850 }
851 else if( proj_momentum < 1.4 )
852 {
853 hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
854 }
855 else // if( proj_momentum < 10. )
856 {
857 hpXscv = 33.3+
858 20.8*(std::pow(proj_momentum,2.0)-1.35)/
859 (std::pow(proj_momentum,2.50)+0.95);
860 }
861 xsection = hpXscv*zz + hnXscv*nn;
862 }
863 }
864 else if(theParticle == theProton)
865 {
866 if( proj_momentum >= 373.)
867 {
868 return GetHadronNucleonXscPDG(aParticle,At,Zt);
869 }
870 else if( proj_momentum >= 10.)
871 // if( proj_momentum >= 2.)
872 {
873 // Delta = 1.; DHW 19 May 2011: variable set but not used
874 // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
875
876 if(proj_momentum >= 10.)
877 {
878 B0 = 7.5;
879 A0 = 100. - B0*std::log(3.0e7);
880
881 xsection = A0 + B0*std::log(proj_energy) - 11
882 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
883 0.93827*0.93827,-0.165); // mb
884 }
885 xsection *= zz + nn;
886 }
887 else
888 {
889 // pp
890
891 if( proj_momentum < 0.73 )
892 {
893 hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
894 }
895 else if( proj_momentum < 1.05 )
896 {
897 hpXscv = 23 + 40*(std::log(proj_momentum/0.73))*
898 (std::log(proj_momentum/0.73));
899 }
900 else // if( proj_momentum < 10. )
901 {
902 hpXscv = 39.0+
903 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
904 }
905 // pn to be np
906
907 if( proj_momentum < 0.8 )
908 {
909 hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
910 }
911 else if( proj_momentum < 1.4 )
912 {
913 hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
914 }
915 else // if( proj_momentum < 10. )
916 {
917 hnXscv = 33.3+
918 20.8*(std::pow(proj_momentum,2.0)-1.35)/
919 (std::pow(proj_momentum,2.50)+0.95);
920 }
921 xsection = hpXscv*zz + hnXscv*nn;
922 // xsection = hpXscv*(Zt + Nt);
923 // xsection = hnXscv*(Zt + Nt);
924 }
925 // xsection *= 0.95;
926 }
927 else if( theParticle == theAProton )
928 {
929 // xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
930 // + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
931
932 // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
933 // + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
934
935 G4double logP = std::log(proj_momentum);
936
937 if( proj_momentum <= 1.0 )
938 {
939 xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) );
940 }
941 else
942 {
943 xsection = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68)
944 + 0.293*logP*logP - 1.82*logP );
945 }
946 if ( nn > 0.)
947 {
948 xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP);
949 }
950 else // H
951 {
952 fInelasticXsc = 38.0 + 38.0*std::pow( proj_momentum, -0.96)
953 - 0.169*logP*logP;
954 fInelasticXsc *= millibarn;
955 }
956 }
957 else if( theParticle == thePiPlus )
958 {
959 if(proj_momentum < 0.4)
960 {
961 G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
962 hpXscv = Ex3+20.0;
963 }
964 else if( proj_momentum < 1.15 )
965 {
966 G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
967 hpXscv = Ex4+14.0;
968 }
969 else if(proj_momentum < 3.5)
970 {
971 G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
972 G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
973 hpXscv = Ex1+Ex2+27.5;
974 }
975 else // if(proj_momentum > 3.5) // mb
976 {
977 hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
978 }
979 // pi+n = pi-p??
980
981 if(proj_momentum < 0.37)
982 {
983 hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
984 }
985 else if(proj_momentum<0.65)
986 {
987 hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
988 }
989 else if(proj_momentum<1.3)
990 {
991 hnXscv = 36.1+
992 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
993 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
994 }
995 else if(proj_momentum<3.0)
996 {
997 hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
998 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
999 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1000 }
1001 else // mb
1002 {
1003 hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1004 }
1005 xsection = hpXscv*zz + hnXscv*nn;
1006 }
1007 else if(theParticle == thePiMinus)
1008 {
1009 // pi-n = pi+p??
1010
1011 if(proj_momentum < 0.4)
1012 {
1013 G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
1014 hnXscv = Ex3+20.0;
1015 }
1016 else if(proj_momentum < 1.15)
1017 {
1018 G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
1019 hnXscv = Ex4+14.0;
1020 }
1021 else if(proj_momentum < 3.5)
1022 {
1023 G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
1024 G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
1025 hnXscv = Ex1+Ex2+27.5;
1026 }
1027 else // if(proj_momentum > 3.5) // mb
1028 {
1029 hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
1030 }
1031 // pi-p
1032
1033 if(proj_momentum < 0.37)
1034 {
1035 hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
1036 }
1037 else if(proj_momentum<0.65)
1038 {
1039 hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
1040 }
1041 else if(proj_momentum<1.3)
1042 {
1043 hpXscv = 36.1+
1044 10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
1045 24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
1046 }
1047 else if(proj_momentum<3.0)
1048 {
1049 hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
1050 3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
1051 1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1052 }
1053 else // mb
1054 {
1055 hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1056 }
1057 xsection = hpXscv*zz + hnXscv*nn;
1058 }
1059 else if(theParticle == theKPlus)
1060 {
1061 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1062 + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
1063
1064 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1065 + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
1066 }
1067 else if(theParticle == theKMinus)
1068 {
1069 xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1070 + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
1071
1072 xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1073 + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
1074 }
1075 else if(theParticle == theSMinus)
1076 {
1077 xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
1078 - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
1079 }
1080 else if(theParticle == theGamma) // modify later on
1081 {
1082 xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
1083 + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
1084
1085 }
1086 else // as proton ???
1087 {
1088 xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
1089 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
1090
1091 xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
1092 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
1093 }
1094 xsection *= millibarn; // parametrised in mb
1095 return xsection;
1096}
1097
1098G4double
1100 G4int At, G4int Zt)
1101{
1102 G4double Tkin, logTkin, xsc, xscP, xscN;
1103 const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
1104
1105 G4int Nt = At-Zt; // number of neutrons
1106 if (Nt < 0) Nt = 0;
1107
1108 Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
1109
1110 if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
1111
1112 logTkin = std::log(Tkin); // Tkin in MeV!!!
1113
1114 if( theParticle == theKPlus )
1115 {
1116 xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
1117 xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
1118 }
1119 else if( theParticle == theKMinus )
1120 {
1121 xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
1122 xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
1123 }
1124 else // K-zero as half of K+ and K-
1125 {
1126 xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
1127 xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
1128 }
1129 xsc = xscP*Zt + xscN*Nt;
1130 return xsc;
1131}
1132/////////////////////////////////////////////////////////////////////////////////////
1133//
1134// Returns hadron-nucleon inelastic cross-section based on proper parametrisation
1135
1136G4double
1138 const G4Element* anElement)
1139{
1140 G4int At = G4lrint(anElement->GetN()); // number of nucleons
1141 G4int Zt = G4lrint(anElement->GetZ()); // number of protons
1142
1143 return GetHNinelasticXsc(aParticle, At, Zt);
1144}
1145
1146/////////////////////////////////////////////////////////////////////////////////////
1147//
1148// Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1149
1150G4double
1152 G4int At, G4int Zt)
1153{
1154 G4ParticleDefinition* hadron = aParticle->GetDefinition();
1155 G4double sumInelastic;
1156 G4int Nt = At - Zt;
1157 if(Nt < 0) Nt = 0;
1158
1159 if( hadron == theKPlus )
1160 {
1161 sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt);
1162 }
1163 else
1164 {
1165 //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton);
1166 // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);
1167 sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
1168 sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);
1169 }
1170 return sumInelastic;
1171}
1172
1173
1174/////////////////////////////////////////////////////////////////////////////////////
1175//
1176// Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1177
1178G4double
1180 G4int At, G4int Zt)
1181{
1182 G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
1183 G4int absPDGcode = std::abs(PDGcode);
1184
1185 G4double Elab = aParticle->GetTotalEnergy();
1186 // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
1187 G4double Plab = aParticle->GetMomentum().mag();
1188 // std::sqrt(Elab * Elab - 0.88);
1189
1190 Elab /= GeV;
1191 Plab /= GeV;
1192
1193 G4double LogPlab = std::log( Plab );
1194 G4double sqrLogPlab = LogPlab * LogPlab;
1195
1196 //G4cout<<"Plab = "<<Plab<<G4endl;
1197
1198 G4double NumberOfTargetProtons = G4double(Zt);
1199 G4double NumberOfTargetNucleons = G4double(At);
1200 G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
1201
1202 if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
1203
1204 G4double Xtotal, Xelastic, Xinelastic;
1205
1206 if( absPDGcode > 1000 ) //------Projectile is baryon --------
1207 {
1208 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1209 0.522*sqrLogPlab - 4.51*LogPlab;
1210
1211 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1212 0.513*sqrLogPlab - 4.27*LogPlab;
1213
1214 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1215 0.169*sqrLogPlab - 1.85*LogPlab;
1216
1217 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1218 0.169*sqrLogPlab - 1.85*LogPlab;
1219
1220 Xtotal = (NumberOfTargetProtons * XtotPP +
1221 NumberOfTargetNeutrons * XtotPN);
1222
1223 Xelastic = (NumberOfTargetProtons * XelPP +
1224 NumberOfTargetNeutrons * XelPN);
1225 }
1226 else if( PDGcode == 211 ) //------Projectile is PionPlus -------
1227 {
1228 G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1229 0.19 *sqrLogPlab - 0.0 *LogPlab;
1230
1231 G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1232 0.456*sqrLogPlab - 4.03*LogPlab;
1233
1234 G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) +
1235 0.079*sqrLogPlab - 0.0 *LogPlab;
1236
1237 G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) +
1238 0.043*sqrLogPlab - 0.0 *LogPlab;
1239
1240 Xtotal = ( NumberOfTargetProtons * XtotPiP +
1241 NumberOfTargetNeutrons * XtotPiN );
1242
1243 Xelastic = ( NumberOfTargetProtons * XelPiP +
1244 NumberOfTargetNeutrons * XelPiN );
1245 }
1246 else if( PDGcode == -211 ) //------Projectile is PionMinus -------
1247 {
1248 G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1249 0.456*sqrLogPlab - 4.03*LogPlab;
1250
1251 G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1252 0.19 *sqrLogPlab - 0.0 *LogPlab;
1253
1254 G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) +
1255 0.043*sqrLogPlab - 0.0 *LogPlab;
1256
1257 G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) +
1258 0.079*sqrLogPlab - 0.0 *LogPlab;
1259
1260 Xtotal = ( NumberOfTargetProtons * XtotPiP +
1261 NumberOfTargetNeutrons * XtotPiN );
1262
1263 Xelastic = ( NumberOfTargetProtons * XelPiP +
1264 NumberOfTargetNeutrons * XelPiN );
1265 }
1266 else if( PDGcode == 111 ) //------Projectile is PionZero -------
1267 {
1268 G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) +
1269 0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
1270 33.0 + 14.0 *std::pow(Plab,-1.36) +
1271 0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
1272
1273 G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) +
1274 0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
1275 16.4 + 19.3 *std::pow(Plab,-0.42) +
1276 0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1277
1278 G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) +
1279 0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
1280 1.76 + 11.2*std::pow(Plab,-0.64) +
1281 0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1282
1283 G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) +
1284 0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
1285 0.0 + 11.4*std::pow(Plab,-0.40) +
1286 0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1287
1288 Xtotal = ( NumberOfTargetProtons * XtotPiP +
1289 NumberOfTargetNeutrons * XtotPiN );
1290
1291 Xelastic = ( NumberOfTargetProtons * XelPiP +
1292 NumberOfTargetNeutrons * XelPiN );
1293 }
1294 else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
1295 {
1296 G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) +
1297 0.26 *sqrLogPlab - 1.0 *LogPlab;
1298 G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) +
1299 0.21 *sqrLogPlab - 0.89*LogPlab;
1300
1301 G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1302 0.16 *sqrLogPlab - 1.3 *LogPlab;
1303
1304 G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) +
1305 0.29 *sqrLogPlab - 2.4 *LogPlab;
1306
1307 Xtotal = ( NumberOfTargetProtons * XtotKP +
1308 NumberOfTargetNeutrons * XtotKN );
1309
1310 Xelastic = ( NumberOfTargetProtons * XelKP +
1311 NumberOfTargetNeutrons * XelKN );
1312 }
1313 else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
1314 {
1315 G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) +
1316 0.66 *sqrLogPlab - 5.6 *LogPlab;
1317 G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) +
1318 0.38 *sqrLogPlab - 2.9 *LogPlab;
1319
1320 G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) +
1321 0.29 *sqrLogPlab - 2.4 *LogPlab;
1322
1323 G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1324 0.16 *sqrLogPlab - 1.3 *LogPlab;
1325
1326 Xtotal = ( NumberOfTargetProtons * XtotKP +
1327 NumberOfTargetNeutrons * XtotKN );
1328
1329 Xelastic = ( NumberOfTargetProtons * XelKP +
1330 NumberOfTargetNeutrons * XelKN );
1331 }
1332 else if( PDGcode == 311 ) //------Projectile is KaonZero ------
1333 {
1334 G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) +
1335 0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
1336 32.1 + 0. *std::pow(Plab, 0. ) +
1337 0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
1338
1339 G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) +
1340 0.21 *sqrLogPlab - 0.89*LogPlab + //K+
1341 25.2 + 0. *std::pow(Plab, 0. ) +
1342 0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
1343
1344 G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 )
1345 + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
1346 7.3 + 0. *std::pow(Plab,-0. ) +
1347 0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
1348
1349 G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) +
1350 0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
1351 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1352 0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
1353
1354 Xtotal = ( NumberOfTargetProtons * XtotKP +
1355 NumberOfTargetNeutrons * XtotKN );
1356
1357 Xelastic = ( NumberOfTargetProtons * XelKP +
1358 NumberOfTargetNeutrons * XelKN );
1359 }
1360 else //------Projectile is undefined, Nucleon assumed
1361 {
1362 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1363 0.522*sqrLogPlab - 4.51*LogPlab;
1364
1365 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1366 0.513*sqrLogPlab - 4.27*LogPlab;
1367
1368 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1369 0.169*sqrLogPlab - 1.85*LogPlab;
1370 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1371 0.169*sqrLogPlab - 1.85*LogPlab;
1372
1373 Xtotal = ( NumberOfTargetProtons * XtotPP +
1374 NumberOfTargetNeutrons * XtotPN );
1375
1376 Xelastic = ( NumberOfTargetProtons * XelPP +
1377 NumberOfTargetNeutrons * XelPN );
1378 }
1379 Xinelastic = Xtotal - Xelastic;
1380
1381 if( Xinelastic < 0.) Xinelastic = 0.;
1382
1383 return Xinelastic*= millibarn;
1384}
1385
1386////////////////////////////////////////////////////////////////////////////////////
1387//
1388//
1389
1390G4double
1392 const G4Element* anElement)
1393{
1394 G4int At = G4lrint(anElement->GetN());
1395 G4double oneThird = 1.0/3.0;
1396 G4double cubicrAt = std::pow(G4double(At), oneThird);
1397
1398 G4double R; // = fRadiusConst*cubicrAt;
1399 /*
1400 G4double tmp = std::pow( cubicrAt-1., 3.);
1401 tmp += At;
1402 tmp *= 0.5;
1403
1404 if (At > 20.) // 20.
1405 {
1406 R = fRadiusConst*std::pow (tmp, oneThird);
1407 }
1408 else
1409 {
1410 R = fRadiusConst*cubicrAt;
1411 }
1412 */
1413
1414 R = fRadiusConst*cubicrAt;
1415
1416 G4double meanA = 21.;
1417
1418 G4double tauA1 = 40.;
1419 G4double tauA2 = 10.;
1420 G4double tauA3 = 5.;
1421
1422 G4double a1 = 0.85;
1423 G4double b1 = 1. - a1;
1424
1425 G4double b2 = 0.3;
1426 G4double b3 = 4.;
1427
1428 if (At > 20) // 20.
1429 {
1430 R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
1431 }
1432 else if (At > 3)
1433 {
1434 R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
1435 }
1436 else
1437 {
1438 R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
1439 }
1440 return R;
1441
1442}
1443////////////////////////////////////////////////////////////////////////////////////
1444//
1445//
1446
1447G4double
1449{
1450 G4double oneThird = 1.0/3.0;
1451 G4double cubicrAt = std::pow(G4double(At), oneThird);
1452
1453 G4double R; // = fRadiusConst*cubicrAt;
1454
1455 /*
1456 G4double tmp = std::pow( cubicrAt-1., 3.);
1457 tmp += At;
1458 tmp *= 0.5;
1459
1460 if (At > 20.)
1461 {
1462 R = fRadiusConst*std::pow (tmp, oneThird);
1463 }
1464 else
1465 {
1466 R = fRadiusConst*cubicrAt;
1467 }
1468 */
1469
1470 R = fRadiusConst*cubicrAt;
1471
1472 G4double meanA = 20.;
1473 G4double tauA = 20.;
1474
1475 if (At > 20) // 20.
1476 {
1477 R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) );
1478 }
1479 else
1480 {
1481 R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) );
1482 }
1483
1484 return R;
1485}
1486
1487////////////////////////////////////////////////////////////////////////////////////
1488//
1489//
1490
1492 const G4double mt ,
1493 const G4double Plab )
1494{
1495 G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1496 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
1497 // G4double Pcm = Plab * mt / Ecm;
1498 // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
1499
1500 return Ecm ; // KEcm;
1501}
1502
1503////////////////////////////////////////////////////////////////////////////////////
1504//
1505//
1506
1508 const G4double mt ,
1509 const G4double Plab )
1510{
1511 G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1512 G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
1513
1514 return sMand;
1515}
1516
1517////////////////////////////////////////////////////////////////////////////////////
1518//
1519//
1520
1522{
1523 outFile << "G4GlauberGribovCrossSection calculates total, inelastic and\n"
1524 << "elastic cross sections for hadron-nucleus cross sections using\n"
1525 << "the Glauber model with Gribov corrections. It is valid for all\n"
1526 << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
1527 << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n"
1528 << "a cross section component which is to be used to build a cross\n"
1529 << "data set.\n";
1530}
1531
1532//
1533//
1534///////////////////////////////////////////////////////////////////////////////////////
#define G4_DECLARE_XS_FACTORY(cross_section)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
double mag() const
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
static G4AntiLambda * AntiLambda()
static G4AntiNeutron * AntiNeutron()
static G4AntiOmegaMinus * AntiOmegaMinus()
static G4AntiProton * AntiProton()
Definition: G4AntiProton.cc:93
static G4AntiSigmaMinus * AntiSigmaMinus()
static G4AntiSigmaPlus * AntiSigmaPlus()
static G4AntiSigmaZero * AntiSigmaZero()
static G4AntiXiMinus * AntiXiMinus()
static G4AntiXiZero * AntiXiZero()
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
G4double GetMass() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
G4double GetZ() const
Definition: G4Element.hh:131
G4double GetN() const
Definition: G4Element.hh:134
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual void CrossSectionDescription(std::ostream &) const
G4double GetRatioQE(const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetParticleBarCorIn(const G4ParticleDefinition *theParticle, G4int Z)
G4double CalculateEcmValue(const G4double, const G4double, const G4double)
G4double GetHadronNucleonXscPDG(const G4DynamicParticle *, const G4Element *)
G4double GetHNinelasticXsc(const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXsc(const G4DynamicParticle *, const G4Element *)
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4Element *)
G4double GetRatioSD(const G4DynamicParticle *, G4int At, G4int Zt)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *aDP, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
G4double GetNucleusRadius(const G4DynamicParticle *, const G4Element *)
G4double CalcMandelstamS(const G4double, const G4double, const G4double)
G4double GetParticleBarCorTot(const G4ParticleDefinition *theParticle, G4int Z)
G4double GetHNinelasticXscVU(const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetKaonNucleonXscVector(const G4DynamicParticle *, G4int At, G4int Zt)
G4double GetKmNeutronTotXscVector(G4double logEnergy)
G4double GetHadronNucleonXscNS(const G4DynamicParticle *, const G4ParticleDefinition *)
G4double GetKmProtonTotXscVector(G4double logEnergy)
G4double GetInelasticHadronNucleonXsc()
G4double GetKpNeutronTotXscVector(G4double logEnergy)
G4double GetKpProtonTotXscVector(G4double logEnergy)
static G4He3 * He3()
Definition: G4He3.cc:94
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4OmegaMinus * OmegaMinus()
static G4ParticleTable * GetParticleTable()
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
int G4lrint(double ad)
Definition: templates.hh:163