Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEPionPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: PionPlus Inelastic Process
29// J.L. Chuma, TRIUMF, 19-Nov-1996
30
31// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
32// fixing charge exchange - HPW Sep 2002.
33
34#include <iostream>
35
38#include "G4SystemOfUnits.hh"
39#include "Randomize.hh"
40
43{
44 SetMinEnergy(0.0);
45 SetMaxEnergy(55.*GeV);
46 G4cout << "WARNING: model G4LEPionPlusInelastic is being deprecated and will\n"
47 << "disappear in Geant4 version 10.0" << G4endl;
48}
49
50
51void G4LEPionPlusInelastic::ModelDescription(std::ostream& outFile) const
52{
53 outFile << "G4LEPionPlusInelastic is one of the Low Energy Parameterized\n"
54 << "(LEP) models used to implement inelastic pi+ scattering\n"
55 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
56 << "code of H. Fesefeldt. It divides the initial collision\n"
57 << "products into backward- and forward-going clusters which are\n"
58 << "then decayed into final state hadrons. The model does not\n"
59 << "conserve energy on an event-by-event basis. It may be\n"
60 << "applied to pions with initial energies between 0 and 25\n"
61 << "GeV.\n";
62}
63
64
67 G4Nucleus& targetNucleus)
68{
69 const G4HadProjectile *originalIncident = &aTrack;
70 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
74 return &theParticleChange;
75 }
76
77 // create the target particle
78
79 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
80 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
81
82 if (verboseLevel > 1) {
83 const G4Material* targetMaterial = aTrack.GetMaterial();
84 G4cout << "G4LEPionPlusInelastic::ApplyYourself called" << G4endl;
85 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
86 G4cout << "target material = " << targetMaterial->GetName() << ", ";
87 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
88 << G4endl;
89 }
90 G4ReactionProduct currentParticle(
91 const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition() ) );
92 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
93 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
94
95 // Fermi motion and evaporation
96 // As of Geant3, the Fermi energy calculation had not been Done
97 G4double ek = originalIncident->GetKineticEnergy();
98 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
99
100 G4double tkin = targetNucleus.Cinema(ek);
101 ek += tkin;
102 currentParticle.SetKineticEnergy(ek);
103 G4double et = ek + amas;
104 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
105 G4double pp = currentParticle.GetMomentum().mag();
106 if (pp > 0.0) {
107 G4ThreeVector momentum = currentParticle.GetMomentum();
108 currentParticle.SetMomentum( momentum * (p/pp) );
109 }
110
111 // calculate black track energies
112 tkin = targetNucleus.EvaporationEffects(ek);
113 ek -= tkin;
114 currentParticle.SetKineticEnergy(ek);
115 et = ek + amas;
116 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
117 pp = currentParticle.GetMomentum().mag();
118 if (pp > 0.0) {
119 G4ThreeVector momentum = currentParticle.GetMomentum();
120 currentParticle.SetMomentum( momentum * (p/pp) );
121 }
122
123 G4ReactionProduct modifiedOriginal = currentParticle;
124
125 currentParticle.SetSide(1); // incident always goes in forward hemisphere
126 targetParticle.SetSide(-1); // target always goes in backward hemisphere
127 G4bool incidentHasChanged = false;
128 G4bool targetHasChanged = false;
129 G4bool quasiElastic = false;
130 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
131 G4int vecLen = 0;
132 vec.Initialize(0);
133
134 const G4double cutOff = 0.1*MeV;
135 if (currentParticle.GetKineticEnergy() > cutOff)
136 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
137 incidentHasChanged, targetHasChanged, quasiElastic);
138
139 CalculateMomenta(vec, vecLen,
140 originalIncident, originalTarget, modifiedOriginal,
141 targetNucleus, currentParticle, targetParticle,
142 incidentHasChanged, targetHasChanged, quasiElastic);
143
144 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
145
146 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
147
148 delete originalTarget;
149 return &theParticleChange;
150}
151
152
153void G4LEPionPlusInelastic::Cascade(
155 G4int& vecLen,
156 const G4HadProjectile* originalIncident,
157 G4ReactionProduct& currentParticle,
158 G4ReactionProduct& targetParticle,
159 G4bool& incidentHasChanged,
160 G4bool& targetHasChanged,
161 G4bool& quasiElastic)
162{
163 // derived from original FORTRAN code CASPIP by H. Fesefeldt (18-Sep-1987)
164 //
165 // pi+ undergoes interaction with nucleon within nucleus.
166 // Check if energetically possible to produce pions/kaons.
167 // If not assume nuclear excitation occurs and input particle
168 // is degraded in energy. No other particles produced.
169 // If reaction is possible find correct number of pions/protons/neutrons
170 // produced using an interpolation to multiplicity data.
171 // Replace some pions or protons/neutrons by kaons or strange baryons
172 // according to average multiplicity per inelastic reactions.
173
174 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
175 const G4double etOriginal = originalIncident->GetTotalEnergy();
176 const G4double pOriginal = originalIncident->GetTotalMomentum();
177 const G4double targetMass = targetParticle.GetMass();
178 G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
179 targetMass*targetMass +
180 2.0*targetMass*etOriginal);
181 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
182 static G4bool first = true;
183 const G4int numMul = 1200;
184 const G4int numSec = 60;
185 static G4double protmul[numMul], protnorm[numSec]; // proton constants
186 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
187
188 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
189 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
190 const G4double c = 1.25;
191 const G4double b[] = { 0.70, 0.70 };
192 if( first ) { // compute normalization constants, this will only be Done once
193 first = false;
194 G4int i;
195 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
196 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
197 counter = -1;
198 for( npos=0; npos<(numSec/3); ++npos ) {
199 for( nneg=std::max(0,npos-2); nneg<=npos; ++nneg ) {
200 for( nzero=0; nzero<numSec/3; ++nzero ) {
201 if( ++counter < numMul ) {
202 nt = npos+nneg+nzero;
203 if( nt > 0 ) {
204 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
205 protnorm[nt-1] += protmul[counter];
206 }
207 }
208 }
209 }
210 }
211 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
212 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
213 counter = -1;
214 for( npos=0; npos<numSec/3; ++npos ) {
215 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg ) {
216 for( nzero=0; nzero<numSec/3; ++nzero ) {
217 if( ++counter < numMul ) {
218 nt = npos+nneg+nzero;
219 if( (nt>0) && (nt<=numSec) ) {
220 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
221 neutnorm[nt-1] += neutmul[counter];
222 }
223 }
224 }
225 }
226 }
227 for( i=0; i<numSec; ++i ) {
228 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
229 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
230 }
231 } // end of initialization
232
233 const G4double expxu = 82.; // upper bound for arg. of exp
234 const G4double expxl = -expxu; // lower bound for arg. of exp
238 G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
239 const G4double supp[] = {0.,0.2,0.45,0.55,0.65,0.75,0.85,0.90,0.94,0.98};
240 G4double test, w0, wp, wt, wm;
241 if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
242 {
243 // suppress high multiplicity events at low momentum
244 // only one pion will be produced
245 // charge exchange reaction is included in inelastic cross section
246
247 const G4double cech[] = {1.,0.95,0.79,0.32,0.19,0.16,0.14,0.12,0.10,0.08};
248 G4int iplab = G4int(std::min( 9.0, pOriginal/GeV*5.0 ));
249 if( G4UniformRand() <= cech[iplab] )
250 {
251 if( targetParticle.GetDefinition() == aNeutron )
252 {
253 currentParticle.SetDefinitionAndUpdateE( aPiZero ); // charge exchange
254 targetParticle.SetDefinitionAndUpdateE( aProton );
255 incidentHasChanged = true;
256 targetHasChanged = true;
257 }
258 }
259
260 if( availableEnergy <= G4PionMinus::PionMinus()->GetPDGMass() )
261 {
262 quasiElastic = true;
263 return;
264 }
265
266 nneg = npos = nzero = 0;
267 if( targetParticle.GetDefinition() == aProton ) {
268 test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[0])/(2.0*c*c) ) ) );
269 w0 = test;
270 wp = test;
271 if( G4UniformRand() < w0/(w0+wp) )
272 nzero =1;
273 else
274 npos = 1;
275 } else { // target is a neutron
276 test = std::exp( std::min( expxu, std::max( expxl, -sqr(1.0+b[1])/(2.0*c*c) ) ) );
277 w0 = test;
278 wp = test;
279 test = std::exp( std::min( expxu, std::max( expxl, -sqr(-1.0+b[1])/(2.0*c*c) ) ) );
280 wm = test;
281 wt = w0+wp+wm;
282 wp = w0+wp;
283 G4double ran = G4UniformRand();
284 if( ran < w0/wt )
285 nzero = 1;
286 else if( ran < wp/wt )
287 npos = 1;
288 else
289 nneg = 1;
290 }
291 } else {
292 if( availableEnergy <= G4PionMinus::PionMinus()->GetPDGMass() )
293 {
294 quasiElastic = true;
295 return;
296 }
297 G4double n, anpn;
298 GetNormalizationConstant( availableEnergy, n, anpn );
299 G4double ran = G4UniformRand();
300 G4double dum, excs = 0.0;
301 if( targetParticle.GetDefinition() == aProton ) {
302 counter = -1;
303 for( npos=0; (npos<numSec/3) && (ran>=excs); ++npos ) {
304 for( nneg=std::max(0,npos-2); (nneg<=npos) && (ran>=excs); ++nneg ) {
305 for( nzero=0; (nzero<numSec/3) && (ran>=excs); ++nzero ) {
306 if( ++counter < numMul ) {
307 nt = npos+nneg+nzero;
308 if( nt > 0 ) {
309 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
310 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
311 if( std::fabs(dum) < 1.0 ) {
312 if( test >= 1.0e-10 )excs += dum*test;
313 } else {
314 excs += dum*test;
315 }
316 }
317 }
318 }
319 }
320 }
321 if( ran >= excs )
322 {
323 quasiElastic = true;
324 return; // 3 previous loops continued to the end
325 }
326 npos--; nneg--; nzero--;
327 } else { // target must be a neutron
328 counter = -1;
329 for( npos=0; (npos<numSec/3) && (ran>=excs); ++npos ) {
330 for( nneg=std::max(0,npos-1); (nneg<=(npos+1)) && (ran>=excs); ++nneg ) {
331 for( nzero=0; (nzero<numSec/3) && (ran>=excs); ++nzero ) {
332 if( ++counter < numMul ) {
333 nt = npos+nneg+nzero;
334 if( (nt>=1) && (nt<=numSec) ) {
335 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
336 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
337 if( std::fabs(dum) < 1.0 ) {
338 if( test >= 1.0e-10 )excs += dum*test;
339 } else {
340 excs += dum*test;
341 }
342 }
343 }
344 }
345 }
346 }
347 if( ran >= excs ) // 3 previous loops continued to the end
348 {
349 quasiElastic = true;
350 return; // 3 previous loops continued to the end
351 }
352 npos--; nneg--; nzero--;
353 }
354 }
355 if( targetParticle.GetDefinition() == aProton ) {
356 switch( npos-nneg ) {
357 case 1:
358 if( G4UniformRand() < 0.5 ) {
359 currentParticle.SetDefinitionAndUpdateE( aPiZero );
360 incidentHasChanged = true;
361 } else {
362 targetParticle.SetDefinitionAndUpdateE( aNeutron );
363 targetHasChanged = true;
364 }
365 break;
366 case 2:
367 currentParticle.SetDefinitionAndUpdateE( aPiZero );
368 targetParticle.SetDefinitionAndUpdateE( aNeutron );
369 incidentHasChanged = true;
370 targetHasChanged = true;
371 break;
372 default:
373 break;
374 }
375 } else {
376 switch( npos-nneg ) {
377 case 0:
378 if( G4UniformRand() < 0.25 ) {
379 currentParticle.SetDefinitionAndUpdateE( aPiZero );
380 targetParticle.SetDefinitionAndUpdateE( aProton );
381 incidentHasChanged = true;
382 targetHasChanged = true;
383 }
384 break;
385 case 1:
386 currentParticle.SetDefinitionAndUpdateE( aPiZero );
387 incidentHasChanged = true;
388 break;
389 default:
390 targetParticle.SetDefinitionAndUpdateE( aProton );
391 targetHasChanged = true;
392 break;
393 }
394 }
395 SetUpPions( npos, nneg, nzero, vec, vecLen );
396 return;
397}
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4LEPionPlusInelastic(const G4String &name="G4LEPionPlusInelastic")
virtual void ModelDescription(std::ostream &outFile) const
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
const G4double pi
T sqr(const T &x)
Definition: templates.hh:145