Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4OpMieHG.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27////////////////////////////////////////////////////////////////////////
28//
29// File G4OpMieHG.hh
30// Description: Discrete Process -- Mie Scattering of Optical Photons
31// Created: 2010-07-03
32// Author: Xin Qian
33// Based on work from Vlasios Vasileiou
34//
35// This subroutine will mimic the Mie scattering based on
36// Henyey-Greenstein phase function
37// Forward and backward angles are treated separately.
38//
39// mail: [email protected]
40//
41////////////////////////////////////////////////////////////////////////
42
43#include "G4OpMieHG.hh"
45#include "G4OpProcessSubType.hh"
46
48 : G4VDiscreteProcess(processName, type)
49{
50 if (verboseLevel>0) {
51 G4cout << GetProcessName() << " is created " << G4endl;
52 }
53
55}
56
58
59 ////////////
60 // Methods
61 ////////////
62
63// PostStepDoIt
64// -------------
65//
67G4OpMieHG::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
68{
70
71 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
72 const G4Material* aMaterial = aTrack.GetMaterial();
73 G4MaterialPropertiesTable* aMaterialPropertyTable =
74 aMaterial->GetMaterialPropertiesTable();
75
76 G4double forward_g =
77 aMaterialPropertyTable->GetConstProperty("MIEHG_FORWARD");
78 G4double backward_g =
79 aMaterialPropertyTable->GetConstProperty("MIEHG_BACKWARD");
80 G4double ForwardRatio =
81 aMaterialPropertyTable->GetConstProperty("MIEHG_FORWARD_RATIO");
82
83 if (verboseLevel>0) {
84 G4cout << "MIE Scattering Photon!" << G4endl;
85 G4cout << "MIE Old Momentum Direction: "
86 << aParticle->GetMomentumDirection() << G4endl;
87 G4cout << "MIE Old Polarization: "
88 << aParticle->GetPolarization() << G4endl;
89 }
90
91 G4double gg;
92 G4int direction;
93 if (G4UniformRand()<=ForwardRatio){
94 gg = forward_g;
95 direction = 1;
96 } else {
97 gg = backward_g;
98 direction = -1;
99 }
100
102
103 G4double Theta;
104 //sample the direction
105 if (gg!=0) {
106 Theta = std::acos(2*r*(1+gg)*(1+gg)*(1-gg+gg*r)/((1-gg+2*gg*r)*(1-gg+2*gg*r)) -1);
107 } else {
108 Theta = std::acos(2*r-1.);
109 }
110 G4double Phi = G4UniformRand()*2*pi;
111
112 if (direction==-1) Theta = pi - Theta; //backward scattering
113
114 G4ThreeVector NewMomentumDirection, OldMomentumDirection;
115 G4ThreeVector OldPolarization, NewPolarization;
116
117 NewMomentumDirection.set
118 (std::sin(Theta)*std::cos(Phi), std::sin(Theta)*std::sin(Phi), std::cos(Theta));
119 OldMomentumDirection = aParticle->GetMomentumDirection();
120 NewMomentumDirection.rotateUz(OldMomentumDirection);
121 NewMomentumDirection = NewMomentumDirection.unit();
122
123 OldPolarization = aParticle->GetPolarization();
124 G4double constant = -1./NewMomentumDirection.dot(OldPolarization);
125
126 NewPolarization = NewMomentumDirection + constant*OldPolarization;
127 NewPolarization = NewPolarization.unit();
128
129 if (NewPolarization.mag()==0) {
130 r = G4UniformRand()*twopi;
131 NewPolarization.set(std::cos(r),std::sin(r),0.);
132 NewPolarization.rotateUz(NewMomentumDirection);
133 } else {
134 // There are two directions which perpendicular
135 // new momentum direction
136 if (G4UniformRand() < 0.5) NewPolarization = -NewPolarization;
137 }
138
139 aParticleChange.ProposePolarization(NewPolarization);
140 aParticleChange.ProposeMomentumDirection(NewMomentumDirection);
141
142 if (verboseLevel>0) {
143 G4cout << "MIE New Polarization: "
144 << NewPolarization << G4endl;
145 G4cout << "MIE Polarization Change: "
147 G4cout << "MIE New Momentum Direction: "
148 << NewMomentumDirection << G4endl;
149 G4cout << "MIE Momentum Change: "
151 }
152
153 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
154}
155
156// GetMeanFreePath()
157// -----------------
158//
160 G4double ,
162{
163 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
164 const G4Material* aMaterial = aTrack.GetMaterial();
165
166 G4double thePhotonEnergy = aParticle->GetTotalEnergy();
167
168 G4double AttenuationLength = DBL_MAX;
169
170 G4MaterialPropertiesTable* aMaterialPropertyTable =
171 aMaterial->GetMaterialPropertiesTable();
172
173 if (aMaterialPropertyTable) {
174 G4MaterialPropertyVector* AttenuationLengthVector =
175 aMaterialPropertyTable->GetProperty("MIEHG");
176 if (AttenuationLengthVector) {
177 AttenuationLength = AttenuationLengthVector ->
178 Value(thePhotonEnergy);
179 } else {
180// G4cout << "No Mie scattering length specified" << G4endl;
181 }
182 } else {
183// G4cout << "No Mie scattering length specified" << G4endl;
184 }
185
186// G4cout << thePhotonEnergy/GeV << " \t" << AttenuationLength/m << G4endl;
187
188 return AttenuationLength;
189}
G4ForceCondition
@ fOpMieHG
G4ProcessType
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double dot(const Hep3Vector &) const
double mag() const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4double GetTotalEnergy() const
const G4ThreeVector & GetPolarization() const
G4MaterialPropertyVector * GetProperty(const char *key)
G4double GetConstProperty(const char *key)
G4MaterialPropertiesTable * GetMaterialPropertiesTable() const
Definition: G4Material.hh:251
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
Definition: G4OpMieHG.cc:67
G4OpMieHG(const G4String &processName="OpMieHG", G4ProcessType type=fOptical)
Definition: G4OpMieHG.cc:47
G4double GetMeanFreePath(const G4Track &aTrack, G4double, G4ForceCondition *)
Definition: G4OpMieHG.cc:159
~G4OpMieHG()
Definition: G4OpMieHG.cc:57
void ProposePolarization(G4double Px, G4double Py, G4double Pz)
const G4ThreeVector * GetPolarization() const
const G4ThreeVector * GetMomentumDirection() const
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
Definition: G4Step.hh:78
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
G4int verboseLevel
Definition: G4VProcess.hh:368
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define DBL_MAX
Definition: templates.hh:83