Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LESigmaPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: SigmaPlus Inelastic Process
29// J.L. Chuma, TRIUMF, 19-Feb-1997
30// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31
34#include "G4SystemOfUnits.hh"
35#include "Randomize.hh"
36
37void G4LESigmaPlusInelastic::ModelDescription(std::ostream& outFile) const
38{
39 outFile << "G4LESigmaPlusInelastic is one of the Low Energy Parameterized\n"
40 << "(LEP) models used to implement inelastic Sigma+ scattering\n"
41 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
42 << "code of H. Fesefeldt. It divides the initial collision\n"
43 << "products into backward- and forward-going clusters which are\n"
44 << "then decayed into final state hadrons. The model does not\n"
45 << "conserve energy on an event-by-event basis. It may be\n"
46 << "applied to Sigma+ with initial energies between 0 and 25\n"
47 << "GeV.\n";
48}
49
52 G4Nucleus& targetNucleus)
53{
54 const G4HadProjectile *originalIncident = &aTrack;
55 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
59 return &theParticleChange;
60 }
61
62 // create the target particle
63 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
64
65 if (verboseLevel > 1) {
66 const G4Material* targetMaterial = aTrack.GetMaterial();
67 G4cout << "G4LESigmaPlusInelastic::ApplyYourself called" << G4endl;
68 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
69 G4cout << "target material = " << targetMaterial->GetName() << ", ";
70 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
71 << G4endl;
72 }
73
74 // Fermi motion and evaporation
75 // As of Geant3, the Fermi energy calculation had not been Done
76 G4double ek = originalIncident->GetKineticEnergy()/MeV;
77 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
78 G4ReactionProduct modifiedOriginal;
79 modifiedOriginal = *originalIncident;
80
81 G4double tkin = targetNucleus.Cinema(ek);
82 ek += tkin;
83 modifiedOriginal.SetKineticEnergy(ek*MeV);
84 G4double et = ek + amas;
85 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
86 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
87 if (pp > 0.0) {
88 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
89 modifiedOriginal.SetMomentum( momentum * (p/pp) );
90 }
91
92 // calculate black track energies
93 tkin = targetNucleus.EvaporationEffects( ek );
94 ek -= tkin;
95 modifiedOriginal.SetKineticEnergy( ek*MeV );
96 et = ek + amas;
97 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
98 pp = modifiedOriginal.GetMomentum().mag()/MeV;
99 if (pp > 0.0) {
100 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
101 modifiedOriginal.SetMomentum( momentum * (p/pp) );
102 }
103 G4ReactionProduct currentParticle = modifiedOriginal;
104 G4ReactionProduct targetParticle;
105 targetParticle = *originalTarget;
106 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
107 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
108 G4bool incidentHasChanged = false;
109 G4bool targetHasChanged = false;
110 G4bool quasiElastic = false;
111 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
112 G4int vecLen = 0;
113 vec.Initialize(0);
114
115 const G4double cutOff = 0.1;
116 if (currentParticle.GetKineticEnergy()/MeV > cutOff)
117 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
118 incidentHasChanged, targetHasChanged, quasiElastic);
119
120 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
121 modifiedOriginal, targetNucleus, currentParticle,
122 targetParticle, incidentHasChanged, targetHasChanged,
123 quasiElastic);
124
125 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
126
127 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
128
129 delete originalTarget;
130 return &theParticleChange;
131}
132
133
134void G4LESigmaPlusInelastic::Cascade(
136 G4int& vecLen,
137 const G4HadProjectile *originalIncident,
138 G4ReactionProduct &currentParticle,
139 G4ReactionProduct &targetParticle,
140 G4bool &incidentHasChanged,
141 G4bool &targetHasChanged,
142 G4bool &quasiElastic )
143{
144 // derived from original FORTRAN code CASSP by H. Fesefeldt (30-Nov-1987)
145 //
146 // SigmaPlus undergoes interaction with nucleon within a nucleus. Check if it is
147 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
148 // occurs and input particle is degraded in energy. No other particles are produced.
149 // If reaction is possible, find the correct number of pions/protons/neutrons
150 // produced using an interpolation to multiplicity data. Replace some pions or
151 // protons/neutrons by kaons or strange baryons according to the average
152 // multiplicity per inelastic reaction.
153
154 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
155 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
156 const G4double targetMass = targetParticle.GetMass()/MeV;
157 G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
158 targetMass*targetMass +
159 2.0*targetMass*etOriginal);
160 G4double availableEnergy = centerofmassEnergy - (targetMass+mOriginal);
161 if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
162 quasiElastic = true;
163 return;
164 }
165 static G4bool first = true;
166 const G4int numMul = 1200;
167 const G4int numSec = 60;
168 static G4double protmul[numMul], protnorm[numSec]; // proton constants
169 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
170
171 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
172 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
173 G4double test;
174 const G4double c = 1.25;
175 const G4double b[] = { 0.7, 0.7 };
176 if (first) { // Computation of normalization constants will only be done once
177 first = false;
178 G4int i;
179 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
180 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
181 counter = -1;
182 for (npos = 0; npos < (numSec/3); ++npos) {
183 for (nneg = npos; nneg <= (npos+2); ++nneg) {
184 for (nzero = 0; nzero < numSec/3; ++nzero) {
185 if (++counter < numMul) {
186 nt = npos+nneg+nzero;
187 if (nt > 0 && nt <= numSec) {
188 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
189 protnorm[nt-1] += protmul[counter];
190 }
191 }
192 }
193 }
194 }
195
196 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
197 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
198 counter = -1;
199 for( npos=0; npos<numSec/3; ++npos )
200 {
201 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
202 {
203 for( nzero=0; nzero<numSec/3; ++nzero )
204 {
205 if( ++counter < numMul )
206 {
207 nt = npos+nneg+nzero;
208 if( nt>0 && nt<=numSec )
209 {
210 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
211 neutnorm[nt-1] += neutmul[counter];
212 }
213 }
214 }
215 }
216 }
217 for (i = 0; i < numSec; ++i) {
218 if (protnorm[i] > 0.0) protnorm[i] = 1.0/protnorm[i];
219 if (neutnorm[i] > 0.0) neutnorm[i] = 1.0/neutnorm[i];
220 }
221 } // end of initialization
222
223 const G4double expxu = 82.; // upper bound for arg. of exp
224 const G4double expxl = -expxu; // lower bound for arg. of exp
229
230 // energetically possible to produce pion(s) --> inelastic scattering
231 G4double n, anpn;
232 GetNormalizationConstant(availableEnergy, n, anpn);
233 G4double ran = G4UniformRand();
234 G4double dum, excs = 0.0;
235 if (targetParticle.GetDefinition() == aProton) {
236 counter = -1;
237 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
238 {
239 for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
240 {
241 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
242 {
243 if( ++counter < numMul )
244 {
245 nt = npos+nneg+nzero;
246 if( nt>0 && nt<=numSec )
247 {
248 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
249 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
250 if( std::fabs(dum) < 1.0 )
251 {
252 if( test >= 1.0e-10 )excs += dum*test;
253 }
254 else
255 excs += dum*test;
256 }
257 }
258 }
259 }
260 }
261 if( ran >= excs ) // 3 previous loops continued to the end
262 {
263 quasiElastic = true;
264 return;
265 }
266 npos--; nneg--; nzero--;
267 switch( std::min( 3, std::max( 1, npos-nneg+3 ) ) )
268 {
269 case 1:
270 if( G4UniformRand() < 0.5 )
271 currentParticle.SetDefinitionAndUpdateE( aLambda );
272 else
273 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
274 incidentHasChanged = true;
275 targetParticle.SetDefinitionAndUpdateE( aNeutron );
276 targetHasChanged = true;
277 break;
278 case 2:
279 if( G4UniformRand() < 0.5 )
280 {
281 targetParticle.SetDefinitionAndUpdateE( aNeutron );
282 targetHasChanged = true;
283 }
284 else
285 {
286 if( G4UniformRand() < 0.5 )
287 currentParticle.SetDefinitionAndUpdateE( aLambda );
288 else
289 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
290 incidentHasChanged = true;
291 }
292 break;
293 case 3:
294 break;
295 }
296 }
297 else // target must be a neutron
298 {
299 counter = -1;
300 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
301 {
302 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
303 {
304 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
305 {
306 if( ++counter < numMul )
307 {
308 nt = npos+nneg+nzero;
309 if( nt>0 && nt<=numSec )
310 {
311 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
312 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
313 if( std::fabs(dum) < 1.0 )
314 {
315 if( test >= 1.0e-10 )excs += dum*test;
316 }
317 else
318 excs += dum*test;
319 }
320 }
321 }
322 }
323 }
324 if( ran >= excs ) // 3 previous loops continued to the end
325 {
326 quasiElastic = true;
327 return;
328 }
329 npos--; nneg--; nzero--;
330 switch( std::min( 3, std::max( 1, npos-nneg+2 ) ) )
331 {
332 case 1:
333 targetParticle.SetDefinitionAndUpdateE( aProton );
334 targetHasChanged = true;
335 break;
336 case 2:
337 if( G4UniformRand() < 0.5 )
338 {
339 if( G4UniformRand() < 0.5 )
340 {
341 currentParticle.SetDefinitionAndUpdateE( aLambda );
342 incidentHasChanged = true;
343 targetParticle.SetDefinitionAndUpdateE( aProton );
344 targetHasChanged = true;
345 }
346 else
347 {
348 targetParticle.SetDefinitionAndUpdateE( aNeutron );
349 targetHasChanged = true;
350 }
351 }
352 else
353 {
354 if( G4UniformRand() < 0.5 )
355 {
356 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
357 incidentHasChanged = true;
358 targetParticle.SetDefinitionAndUpdateE( aProton );
359 targetHasChanged = true;
360 }
361 }
362 break;
363 case 3:
364 if( G4UniformRand() < 0.5 )
365 currentParticle.SetDefinitionAndUpdateE( aLambda );
366 else
367 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
368 incidentHasChanged = true;
369 break;
370 }
371 }
372 SetUpPions(npos, nneg, nzero, vec, vecLen);
373 return;
374}
375
376 /* end of file */
377
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
const G4double pi