Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4FissionLibrary.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// This software was developed by Lawrence Livermore National Laboratory.
28//
29// Redistribution and use in source and binary forms, with or without
30// modification, are permitted provided that the following conditions are met:
31//
32// 1. Redistributions of source code must retain the above copyright notice,
33// this list of conditions and the following disclaimer.
34// 2. Redistributions in binary form must reproduce the above copyright notice,
35// this list of conditions and the following disclaimer in the documentation
36// and/or other materials provided with the distribution.
37// 3. The name of the author may not be used to endorse or promote products
38// derived from this software without specific prior written permission.
39//
40// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
41// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
42// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
43// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
45// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
46// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
47// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
48// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
49// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50//
51// Copyright (c) 2006 The Regents of the University of California.
52// All rights reserved.
53// UCRL-CODE-224807
54//
55//
56// $Id$
57//
58// neutron_hp -- source file
59// J.M. Verbeke, Jan-2007
60// A low energy neutron-induced fission model.
61//
62
63#include "G4FissionLibrary.hh"
64#include "G4SystemOfUnits.hh"
65
67 : G4NeutronHPFinalState(), theIsotope(0), targetMass(0.0)
68{
69 hasXsec = false;
70}
71
73{}
74
76{
78 return theNew;
79}
80
81//void G4FissionLibrary::Init (G4double A, G4double Z, G4String & dirName, G4String &)
83{
84 G4String tString = "/FS/";
85 G4bool dbool;
86 theIsotope = static_cast<G4int>(1000*Z+A);
87 G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
88 G4String filename = aFile.GetName();
89
90 if(!dbool)
91 {
92 hasAnyData = false;
93 hasFSData = false;
94 hasXsec = false;
95 return;
96 }
97 std::ifstream theData(filename, std::ios::in);
98
99 // here it comes
100 G4int infoType, dataType;
101 hasFSData = false;
102 while (theData >> infoType)
103 {
104 hasFSData = true;
105 theData >> dataType;
106 switch(infoType)
107 {
108 case 1:
109 if(dataType==4) theNeutronAngularDis.Init(theData);
110 if(dataType==5) thePromptNeutronEnDis.Init(theData);
111 if(dataType==12) theFinalStatePhotons.InitMean(theData);
112 if(dataType==14) theFinalStatePhotons.InitAngular(theData);
113 if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
114 break;
115 case 2:
116 if(dataType==1) theFinalStateNeutrons.InitMean(theData);
117 break;
118 case 3:
119 if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
120 if(dataType==5) theDelayedNeutronEnDis.Init(theData);
121 break;
122 case 4:
123 if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
124 break;
125 case 5:
126 if(dataType==1) theEnergyRelease.Init(theData);
127 break;
128 default:
129 G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
130 throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
131 break;
132 }
133 }
134 targetMass = theFinalStateNeutrons.GetTargetMass();
135 theData.close();
136}
137
139{
141
142// prepare neutron
143 G4double eKinetic = theTrack.GetKineticEnergy();
144 const G4HadProjectile *incidentParticle = &theTrack;
145 G4ReactionProduct theNeutron( const_cast<G4ParticleDefinition *>(incidentParticle->GetDefinition()) );
146 theNeutron.SetMomentum( incidentParticle->Get4Momentum().vect() );
147 theNeutron.SetKineticEnergy( eKinetic );
148
149// prepare target
150 G4Nucleus aNucleus;
151 G4ReactionProduct theTarget;
152 G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
153 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
154
155// set neutron and target in the FS classes
156 theNeutronAngularDis.SetNeutron(theNeutron);
157 theNeutronAngularDis.SetTarget(theTarget);
158
159// boost to target rest system
160 theNeutron.Lorentz(theNeutron, -1*theTarget);
161
162 eKinetic = theNeutron.GetKineticEnergy();
163
164// dice neutron and gamma multiplicities, energies and momenta in Lab. @@
165// no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
166// also for mean, we rely on the consistency of the data. @@
167
168 G4int nPrompt=0, gPrompt=0;
169 SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
170
171// Build neutrons and add them to dynamic particle vector
172 G4double momentum;
173 for(G4int i=0; i<nPrompt; i++)
174 {
177 it->SetKineticEnergy(getneng_(&i)*MeV);
178 momentum = it->GetTotalMomentum();
179 G4ThreeVector temp(momentum*getndircosu_(&i),
180 momentum*getndircosv_(&i),
181 momentum*getndircosw_(&i));
182 it->SetMomentum( temp );
183// it->SetGlobalTime(getnage_(&i)*second);
185// G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
186 }
187
188// Build gammas, lorentz transform them, and add them to dynamic particle vector
189 for(G4int i=0; i<gPrompt; i++)
190 {
191 G4ReactionProduct * thePhoton = new G4ReactionProduct;
192 thePhoton->SetDefinition(G4Gamma::Gamma());
193 thePhoton->SetKineticEnergy(getpeng_(&i)*MeV);
194 momentum = thePhoton->GetTotalMomentum();
195 G4ThreeVector temp(momentum*getpdircosu_(&i),
196 momentum*getpdircosv_(&i),
197 momentum*getpdircosw_(&i));
198 thePhoton->SetMomentum( temp );
199 thePhoton->Lorentz(*thePhoton, -1.*theTarget);
200
202 it->SetDefinition(thePhoton->GetDefinition());
203 it->SetMomentum(thePhoton->GetMomentum());
204// it->SetGlobalTime(getpage_(&i)*second);
205// G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
207 delete thePhoton;
208 }
209// G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
210// G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
211// G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
212
213// finally deal with local energy depositions.
214 G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
215 theResult.SetLocalEnergyDeposit(eDepByFragments);
216// G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
217// clean up the primary neutron
219 return &theResult;
220}
221
222void G4FissionLibrary::SampleMult(const G4HadProjectile & theTrack, G4int* nPrompt,
223 G4int* gPrompt, G4double eKinetic)
224{
225 G4double promptNeutronMulti = 0;
226 promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
227 G4double delayedNeutronMulti = 0;
228 delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
229
230 G4double time = theTrack.GetGlobalTime()/second;
231 if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
232 // no data for prompt and delayed neutrons in Geant
233 // but there is perhaps data for the total neutron multiplicity, in which case
234 // we use it for prompt neutron emission
235 G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
236 genfissevt_(&theIsotope, &time, &totalNeutronMulti, &eKinetic);
237 } else {
238 // prompt nubar != 0 || delayed nubar != 0
239 genfissevt_(&theIsotope, &time, &promptNeutronMulti, &eKinetic);
240 }
241 *nPrompt = getnnu_();
242 if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
243 *gPrompt = getpnu_();
244 if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
245}
246
@ stopAndKill
G4double getndircosu_(G4int *index)
G4double getpdircosw_(G4int *index)
G4int getnnu_()
G4double getndircosw_(G4int *index)
G4double getpdircosu_(G4int *index)
G4double getneng_(G4int *index)
void genfissevt_(G4int *isotope, G4double *time, G4double *nubar, G4double *eng)
G4double getpeng_(G4int *index)
G4double getndircosv_(G4int *index)
G4double getpdircosv_(G4int *index)
G4int getpnu_()
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
G4double GetTotalMomentum() const
void SetKineticEnergy(G4double aEnergy)
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
G4NeutronHPFinalState * New()
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &)
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetLocalEnergyDeposit(G4double aE)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
G4double GetTemperature() const
Definition: G4Material.hh:181
void SetNeutron(const G4ReactionProduct &aNeutron)
void Init(std::ifstream &aDataFile)
void SetTarget(const G4ReactionProduct &aTarget)
void Init(std::ifstream &aDataFile)
G4NeutronHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
void InitMean(std::ifstream &aDataFile)
G4double GetMean(G4double anEnergy)
G4double GetDelayed(G4double anEnergy)
void InitDelayed(std::ifstream &aDataFile)
void InitPrompt(std::ifstream &aDataFile)
G4double GetPrompt(G4double anEnergy)
G4bool InitMean(std::ifstream &aDataFile)
void InitEnergies(std::ifstream &aDataFile)
void InitAngular(std::ifstream &aDataFile)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:108
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
void SetDefinition(G4ParticleDefinition *aParticleDefinition)