Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PionMinusAbsorptionAtRest.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4PionMinusAbsorptionAtRest physics process
27// Larry Felawka (TRIUMF), April 1998
28//---------------------------------------------------------------------
29
30#include <string.h>
31#include <cmath>
32#include <stdio.h>
33
35#include "G4DynamicParticle.hh"
36#include "G4ParticleTypes.hh"
37#include "G4SystemOfUnits.hh"
38#include "Randomize.hh"
40 #include "G4HadronicDeprecate.hh"
41
42#define MAX_SECONDARIES 100
43
44// constructor
45
46G4PionMinusAbsorptionAtRest::G4PionMinusAbsorptionAtRest(const G4String& processName,
47 G4ProcessType aType ) :
48 G4VRestProcess (processName, aType), // initialization
49 massPionMinus(G4PionMinus::PionMinus()->GetPDGMass()/GeV),
50 pdefGamma(G4Gamma::Gamma()),
51 pdefPionZero(G4PionZero::PionZero()),
52 pdefPionMinus(G4PionMinus::PionMinus()),
53 pdefProton(G4Proton::Proton()),
54 pdefNeutron(G4Neutron::Neutron()),
55 pdefDeuteron(G4Deuteron::Deuteron()),
56 pdefTriton(G4Triton::Triton()),
57 pdefAlpha(G4Alpha::Alpha())
58{
59 G4HadronicDeprecate("G4PiMinusAbsorptionAtRest");
60
61 if (verboseLevel>0) {
62 G4cout << GetProcessName() << " is created "<< G4endl;
63 }
68
70}
71
72// destructor
73
75{
77 delete [] pv;
78 delete [] eve;
79 delete [] gkin;
80}
81
83{
85}
86
88{
90}
91
92// methods.............................................................................
93
95 const G4ParticleDefinition& particle
96 )
97{
98 return ( &particle == pdefPionMinus );
99
100}
101
102// Warning - this method may be optimized away if made "inline"
104{
105 return ( ngkine );
106
107}
108
109// Warning - this method may be optimized away if made "inline"
111{
112 return ( &gkin[0] );
113
114}
115
117 const G4Track& track,
119 )
120{
121 // beggining of tracking
123
124 // condition is set to "Not Forced"
126
127 // get mean life time
129
130 if ((currentInteractionLength <0.0) || (verboseLevel>2)){
131 G4cout << "G4PionMinusAbsorptionAtRestProcess::AtRestGetPhysicalInteractionLength ";
132 G4cout << "[ " << GetProcessName() << "]" <<G4endl;
133 track.GetDynamicParticle()->DumpInfo();
134 G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
135 G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
136 }
137
139
140}
141
143 const G4Track& track,
144 const G4Step&
145 )
146//
147// Handles PionMinuss at rest; a PionMinus can either create secondaries or
148// do nothing (in which case it should be sent back to decay-handling
149// section
150//
151{
152
153// Initialize ParticleChange
154// all members of G4VParticleChange are set to equal to
155// corresponding member in G4Track
156
158
159// Store some global quantities that depend on current material and particle
160
161 globalTime = track.GetGlobalTime()/s;
162 G4Material * aMaterial = track.GetMaterial();
163 const G4int numberOfElements = aMaterial->GetNumberOfElements();
164 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
165
166 const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
167 G4double normalization = 0;
168 for ( G4int i1=0; i1 < numberOfElements; i1++ )
169 {
170 normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
171 // probabilities are included.
172 }
173 G4double runningSum= 0.;
174 G4double random = G4UniformRand()*normalization;
175 for ( G4int i2=0; i2 < numberOfElements; i2++ )
176 {
177 runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
178 // probabilities are included.
179 if (random<=runningSum)
180 {
181 targetCharge = G4double((*theElementVector)[i2]->GetZ());
182 targetAtomicMass = (*theElementVector)[i2]->GetN();
183 }
184 }
185 if (random>runningSum)
186 {
187 targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
188 targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
189
190 }
191
192 if (verboseLevel>1) {
193 G4cout << "G4PionMinusAbsorptionAtRest::AtRestDoIt is invoked " <<G4endl;
194 }
195
196 G4ParticleMomentum momentum;
197 G4float localtime;
198
200
201 GenerateSecondaries(); // Generate secondaries
202
204
205 for ( G4int isec = 0; isec < ngkine; isec++ ) {
206 G4DynamicParticle* aNewParticle = new G4DynamicParticle;
207 aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
208 aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
209
210 localtime = globalTime + gkin[isec].GetTOF();
211
212 G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
213 aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
214 aParticleChange.AddSecondary( aNewTrack );
215
216 }
217
219
220 aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident PionMinus
221
222// clear InteractionLengthLeft
223
225
226 return &aParticleChange;
227
228}
229
230
231void G4PionMinusAbsorptionAtRest::GenerateSecondaries()
232{
233 static G4int index;
234 static G4int l;
235 static G4int nopt;
236 static G4int i;
237 // DHW 15 May 2011: unused: static G4ParticleDefinition* jnd;
238
239 for (i = 1; i <= MAX_SECONDARIES; ++i) {
240 pv[i].SetZero();
241 }
242
243 ngkine = 0; // number of generated secondary particles
244 ntot = 0;
245 result.SetZero();
246 result.SetMass( massPionMinus );
247 result.SetKineticEnergyAndUpdate( 0. );
248 result.SetTOF( 0. );
249 result.SetParticleDef( pdefPionMinus );
250
251 PionMinusAbsorption(&nopt);
252
253 // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
254 if (ntot != 0 || result.GetParticleDef() != pdefPionMinus) {
255 // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
256 // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
257
258 // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
259 // --- THE GEANT TEMPORARY STACK ---
260
261 // --- PUT PARTICLE ON THE STACK ---
262 gkin[0] = result;
263 gkin[0].SetTOF( result.GetTOF() * 5e-11 );
264 ngkine = 1;
265
266 // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
267 // --- CONVENTION IS THE FOLLOWING ---
268
269 // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
270 for (l = 1; l <= ntot; ++l) {
271 index = l - 1;
272 // DHW 15 May 2011: unused: jnd = eve[index].GetParticleDef();
273
274 // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
275 if (ngkine < MAX_SECONDARIES) {
276 gkin[ngkine] = eve[index];
277 gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
278 ++ngkine;
279 }
280 }
281 }
282 else {
283 // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
284 // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
285 ngkine = 0;
286 ntot = 0;
287 globalTime += result.GetTOF() * G4float(5e-11);
288 }
289
290 // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
291 ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
292
293} // GenerateSecondaries
294
295
296void G4PionMinusAbsorptionAtRest::PionMinusAbsorption(G4int *nopt)
297{
298 static G4int i;
299 static G4int nt, nbl;
300 static G4float ran, tex;
301 static G4int isw;
302 static G4float ran2, tof1, ekin;
303 static G4float ekin1, ekin2, black;
304 static G4float pnrat;
305 static G4ParticleDefinition* ipa1;
306 static G4ParticleDefinition* inve;
307
308 // *** CHARGED PION ABSORPTION BY A NUCLEUS ***
309 // *** NVE 04-MAR-1988 CERN GENEVA ***
310
311 // ORIGIN : H.FESEFELDT (09-JULY-1987)
312
313 // PANOFSKY RATIO (PI- P --> N PI0/PI- P --> N GAMMA) = 3/2
314 // FOR CAPTURE ON PROTON (HYDROGEN),
315 // STAR PRODUCTION FOR HEAVIER ELEMENTS
316
317 pv[1].SetZero();
318 pv[1].SetMass( massPionMinus );
319 pv[1].SetKineticEnergyAndUpdate( 0. );
320 pv[1].SetTOF( result.GetTOF() );
321 pv[1].SetParticleDef( result.GetParticleDef() );
322 if (targetAtomicMass <= G4float(1.5)) {
323 ran = G4UniformRand();
324 isw = 1;
325 if (ran < G4float(.33)) {
326 isw = 2;
327 }
328 *nopt = isw;
329 ran = G4UniformRand();
330 tof1 = std::log(ran) * G4float(-25.);
331 tof1 *= G4float(20.);
332 if (isw != 1) {
333 pv[2].SetZero();
334 pv[2].SetMass( 0. );
335 pv[2].SetKineticEnergyAndUpdate( .02 );
336 pv[2].SetTOF( result.GetTOF() + tof1 );
337 pv[2].SetParticleDef( pdefGamma );
338 }
339 else {
340 pv[2] = pv[1];
341 pv[2].SetTOF( result.GetTOF() + tof1 );
342 pv[2].SetParticleDef( pdefPionZero );
343 }
344 result = pv[2];
345 }
346 else {
347 // **
348 // ** STAR PRODUCTION FOR PION ABSORPTION IN HEAVY ELEMENTS
349 // **
350 evapEnergy1 = G4float(.0135);
351 evapEnergy3 = G4float(.0058);
352 nt = 1;
353 tex = evapEnergy1;
354 black = std::log(targetAtomicMass) * G4float(.5);
355 Poisso(black, &nbl);
356 if (nbl <= 0) {
357 nbl = 1;
358 }
359 if (nt + nbl > (MAX_SECONDARIES - 2)) {
360 nbl = (MAX_SECONDARIES - 2) - nt;
361 }
362 ekin = tex / nbl;
363 ekin2 = G4float(0.);
364 for (i = 1; i <= nbl; ++i) {
365 if (nt == (MAX_SECONDARIES - 2)) {
366 continue;
367 }
368 ran2 = G4UniformRand();
369 ekin1 = -G4double(ekin) * std::log(ran2);
370 ekin2 += ekin1;
371 ipa1 = pdefNeutron;
372 pnrat = G4float(1.) - targetCharge / targetAtomicMass;
373 if (G4UniformRand() > pnrat) {
374 ipa1 = pdefProton;
375 }
376 ++nt;
377 pv[nt].SetZero();
378 pv[nt].SetMass( ipa1->GetPDGMass()/GeV );
379 pv[nt].SetKineticEnergyAndUpdate( ekin1 );
380 pv[nt].SetTOF( 2. );
381 pv[nt].SetParticleDef( ipa1 );
382 if (ekin2 > tex) {
383 break;
384 }
385 }
386 tex = evapEnergy3;
387 black = std::log(targetAtomicMass) * G4float(.5);
388 Poisso(black, &nbl);
389 if (nt + nbl > (MAX_SECONDARIES - 2)) {
390 nbl = (MAX_SECONDARIES - 2) - nt;
391 }
392 if (nbl <= 0) {
393 nbl = 1;
394 }
395 ekin = tex / nbl;
396 ekin2 = G4float(0.);
397 for (i = 1; i <= nbl; ++i) {
398 if (nt == (MAX_SECONDARIES - 2)) {
399 continue;
400 }
401 ran2 = G4UniformRand();
402 ekin1 = -G4double(ekin) * std::log(ran2);
403 ekin2 += ekin1;
404 ++nt;
405 ran = G4UniformRand();
406 inve= pdefDeuteron;
407 if (ran > G4float(.6)) {
408 inve = pdefTriton;
409 }
410 if (ran > G4float(.9)) {
411 inve = pdefAlpha;
412 }
413 pv[nt].SetZero();
414 pv[nt].SetMass( inve->GetPDGMass()/GeV );
415 pv[nt].SetKineticEnergyAndUpdate( ekin1 );
416 pv[nt].SetTOF( 2. );
417 pv[nt].SetParticleDef( inve );
418 if (ekin2 > tex) {
419 break;
420 }
421 }
422 // **
423 // ** STORE ON EVENT COMMON
424 // **
425 ran = G4UniformRand();
426 tof1 = std::log(ran) * G4float(-25.);
427 tof1 *= G4float(20.);
428 for (i = 2; i <= nt; ++i) {
429 pv[i].SetTOF( result.GetTOF() + tof1 );
430 }
431 result = pv[2];
432 for (i = 3; i <= nt; ++i) {
433 if (ntot >= MAX_SECONDARIES) {
434 break;
435 }
436 eve[ntot++] = pv[i];
437 }
438 }
439
440} // PionMinusAbsorption
441
442
443void G4PionMinusAbsorptionAtRest::Poisso(G4float xav, G4int *iran)
444{
445 static G4int i;
446 static G4float r, p1, p2, p3;
447 static G4int fivex;
448 static G4float rr, ran, rrr, ran1;
449
450 // *** GENERATION OF POISSON DISTRIBUTION ***
451 // *** NVE 16-MAR-1988 CERN GENEVA ***
452 // ORIGIN : H.FESEFELDT (27-OCT-1983)
453
454 // --- USE NORMAL DISTRIBUTION FOR <X> > 9.9 ---
455 if (xav > G4float(9.9)) {
456 // ** NORMAL DISTRIBUTION WITH SIGMA**2 = <X>
457 Normal(&ran1);
458 ran1 = xav + ran1 * std::sqrt(xav);
459 *iran = G4int(ran1);
460 if (*iran < 0) {
461 *iran = 0;
462 }
463 }
464 else {
465 fivex = G4int(xav * G4float(5.));
466 *iran = 0;
467 if (fivex > 0) {
468 r = std::exp(-G4double(xav));
469 ran1 = G4UniformRand();
470 if (ran1 > r) {
471 rr = r;
472 for (i = 1; i <= fivex; ++i) {
473 ++(*iran);
474 if (i <= 5) {
475 rrr = std::pow(xav, G4float(i)) / NFac(i);
476 }
477 // ** STIRLING' S FORMULA FOR LARGE NUMBERS
478 if (i > 5) {
479 rrr = std::exp(i * std::log(xav) -
480 (i + G4float(.5)) * std::log(i * G4float(1.)) +
481 i - G4float(.9189385));
482 }
483 rr += r * rrr;
484 if (ran1 <= rr) {
485 break;
486 }
487 }
488 }
489 }
490 else {
491 // ** FOR VERY SMALL XAV TRY IRAN=1,2,3
492 p1 = xav * std::exp(-G4double(xav));
493 p2 = xav * p1 / G4float(2.);
494 p3 = xav * p2 / G4float(3.);
495 ran = G4UniformRand();
496 if (ran >= p3) {
497 if (ran >= p2) {
498 if (ran >= p1) {
499 *iran = 0;
500 }
501 else {
502 *iran = 1;
503 }
504 }
505 else {
506 *iran = 2;
507 }
508 }
509 else {
510 *iran = 3;
511 }
512 }
513 }
514
515} // Poisso
516
517
518G4int G4PionMinusAbsorptionAtRest::NFac(G4int n)
519{
520 G4int ret_val;
521 static G4int i, j;
522
523 // *** NVE 16-MAR-1988 CERN GENEVA ***
524 // ORIGIN : H.FESEFELDT (27-OCT-1983)
525
526 ret_val = 1;
527 j = n;
528 if (j > 1) {
529 if (j > 10) {
530 j = 10;
531 }
532 for (i = 2; i <= j; ++i) {
533 ret_val *= i;
534 }
535 }
536 return ret_val;
537
538} // NFac
539
540
541void G4PionMinusAbsorptionAtRest::Normal(G4float *ran)
542{
543 static G4int i;
544
545 // *** NVE 14-APR-1988 CERN GENEVA ***
546 // ORIGIN : H.FESEFELDT (27-OCT-1983)
547
548 *ran = G4float(-6.);
549 for (i = 1; i <= 12; ++i) {
550 *ran += G4UniformRand();
551 }
552
553} // Normal
#define MAX_SECONDARIES
std::vector< G4Element * > G4ElementVector
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
@ NotForced
#define G4HadronicDeprecate(name)
@ fHadronAtRest
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
float G4float
Definition: G4Types.hh:65
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
void DumpInfo(G4int mode=0) const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
G4ParticleDefinition * GetParticleDef()
void SetParticleDef(G4ParticleDefinition *c)
void SetKineticEnergyAndUpdate(G4double ekin)
void DeRegisterExtraProcess(G4VProcess *)
void RegisterExtraProcess(G4VProcess *)
void RegisterParticleForExtraProcess(G4VProcess *, const G4ParticleDefinition *)
static G4HadronicProcessStore * Instance()
void PrintInfo(const G4ParticleDefinition *)
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
const G4String & GetName() const
Definition: G4Material.hh:177
void AddSecondary(G4Track *aSecondary)
virtual void Initialize(const G4Track &)
void BuildPhysicsTable(const G4ParticleDefinition &)
void PreparePhysicsTable(const G4ParticleDefinition &)
G4bool IsApplicable(const G4ParticleDefinition &)
G4VParticleChange * AtRestDoIt(const G4Track &, const G4Step &)
G4double AtRestGetPhysicalInteractionLength(const G4Track &, G4ForceCondition *)
G4GHEKinematicsVector * GetSecondaryKinematics()
G4double GetMeanLifeTime(const G4Track &, G4ForceCondition *)
Definition: G4Step.hh:78
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4TouchableHandle & GetTouchableHandle() const
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4double currentInteractionLength
Definition: G4VProcess.hh:297
virtual void ResetNumberOfInteractionLengthLeft()
Definition: G4VProcess.cc:92
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:289
G4int verboseLevel
Definition: G4VProcess.hh:368
G4double theNumberOfInteractionLengthLeft
Definition: G4VProcess.hh:293
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403
const G4String & GetProcessName() const
Definition: G4VProcess.hh:379
#define ns
Definition: xmlparse.cc:597