Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LENeutronInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Hadronic Process: Low Energy Neutron Inelastic Process
27// J.L. Chuma, TRIUMF, 04-Feb-1997
28
29#include <iostream>
30
33#include "G4SystemOfUnits.hh"
34#include "Randomize.hh"
35#include "G4Electron.hh"
36
37void G4LENeutronInelastic::ModelDescription(std::ostream& outFile) const
38{
39 outFile << "G4LENeutronInelastic is one of the Low Energy Parameterized\n"
40 << "(LEP) models used to implement inelastic neutron scattering\n"
41 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
42 << "code of H. Fesefeldt. It divides the initial collision\n"
43 << "products into backward- and forward-going clusters which are\n"
44 << "then decayed into final state hadrons. The model does not\n"
45 << "conserve energy on an event-by-event basis. It may be\n"
46 << "applied to neutrons with initial energies between 0 and 25\n"
47 << "GeV.\n";
48}
49
50
53 G4Nucleus& targetNucleus)
54{
56 const G4HadProjectile *originalIncident = &aTrack;
57
58 // Create the target particle
59 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
60
61 if (verboseLevel > 1) {
62 const G4Material* targetMaterial = aTrack.GetMaterial();
63 G4cout << "G4LENeutronInelastic::ApplyYourself called" << G4endl;
64 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
65 G4cout << "target material = " << targetMaterial->GetName() << ", ";
66 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
67 << G4endl;
68 }
69
70 G4ReactionProduct modifiedOriginal;
71 modifiedOriginal = *originalIncident;
72 G4ReactionProduct targetParticle;
73 targetParticle = *originalTarget;
74 if (originalIncident->GetKineticEnergy()/GeV < 0.01 + 2.*G4UniformRand()/9.) {
75 SlowNeutron(originalIncident, modifiedOriginal, targetParticle, targetNucleus);
76 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
77 delete originalTarget;
78 return &theParticleChange;
79 }
80
81 // Fermi motion and evaporation
82 // As of Geant3, the Fermi energy calculation had not been done
83 G4double ek = originalIncident->GetKineticEnergy()/MeV;
84 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
85
86 G4double tkin = targetNucleus.Cinema(ek);
87 ek += tkin;
88 modifiedOriginal.SetKineticEnergy( ek*MeV );
89 G4double et = ek + amas;
90 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
91 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
92 if (pp > 0.0) {
93 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
94 modifiedOriginal.SetMomentum(momentum * (p/pp) );
95 }
96
97 // calculate black track energies
98 tkin = targetNucleus.EvaporationEffects( ek );
99 ek -= tkin;
100 modifiedOriginal.SetKineticEnergy( ek*MeV );
101 et = ek + amas;
102 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
103 pp = modifiedOriginal.GetMomentum().mag()/MeV;
104 if (pp > 0.0) {
105 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
106 modifiedOriginal.SetMomentum(momentum * (p/pp) );
107 }
108 const G4double cutOff = 0.1;
109 if (modifiedOriginal.GetKineticEnergy()/MeV <= cutOff) {
110 SlowNeutron(originalIncident, modifiedOriginal, targetParticle, targetNucleus);
111 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
112 delete originalTarget;
113 return &theParticleChange;
114 }
115
116 G4ReactionProduct currentParticle = modifiedOriginal;
117 currentParticle.SetSide(1); // incident always goes in forward hemisphere
118 targetParticle.SetSide(-1); // target always goes in backward hemisphere
119 G4bool incidentHasChanged = false;
120 G4bool targetHasChanged = false;
121 G4bool quasiElastic = false;
122 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
123 G4int vecLen = 0;
124 vec.Initialize(0);
125
126 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
127 incidentHasChanged, targetHasChanged, quasiElastic);
128
129 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
130 modifiedOriginal, targetNucleus, currentParticle,
131 targetParticle, incidentHasChanged, targetHasChanged,
132 quasiElastic);
133
134 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
135
136 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
137 delete originalTarget;
138 return &theParticleChange;
139}
140
141
142void G4LENeutronInelastic::SlowNeutron(const G4HadProjectile* originalIncident,
143 G4ReactionProduct& modifiedOriginal,
144 G4ReactionProduct& targetParticle,
145 G4Nucleus& targetNucleus)
146{
147 const G4double A = targetNucleus.GetA_asInt(); // atomic weight
148 const G4double Z = targetNucleus.GetZ_asInt(); // atomic number
149
150 G4double currentKinetic = modifiedOriginal.GetKineticEnergy()/MeV;
151 G4double currentMass = modifiedOriginal.GetMass()/MeV;
152 if( A < 1.5 ) // Hydrogen
153 {
154 //
155 // very simple simulation of scattering angle and energy
156 // nonrelativistic approximation with isotropic angular
157 // distribution in the cms system
158 //
159 G4double cost1, eka = 0.0;
160 while (eka <= 0.0)
161 {
162 cost1 = -1.0 + 2.0*G4UniformRand();
163 eka = 1.0 + 2.0*cost1*A + A*A;
164 }
165 G4double cost = std::min( 1.0, std::max( -1.0, (A*cost1+1.0)/std::sqrt(eka) ) );
166 eka /= (1.0+A)*(1.0+A);
167 G4double ek = currentKinetic*MeV/GeV;
168 G4double amas = currentMass*MeV/GeV;
169 ek *= eka;
170 G4double en = ek + amas;
171 G4double p = std::sqrt(std::abs(en*en-amas*amas));
172 G4double sint = std::sqrt(std::abs(1.0-cost*cost));
173 G4double phi = G4UniformRand()*twopi;
174 G4double px = sint*std::sin(phi);
175 G4double py = sint*std::cos(phi);
176 G4double pz = cost;
177 targetParticle.SetMomentum( px*GeV, py*GeV, pz*GeV );
178 G4double pxO = originalIncident->Get4Momentum().x()/GeV;
179 G4double pyO = originalIncident->Get4Momentum().y()/GeV;
180 G4double pzO = originalIncident->Get4Momentum().z()/GeV;
181 G4double ptO = pxO*pxO + pyO+pyO;
182 if( ptO > 0.0 )
183 {
184 G4double pO = std::sqrt(pxO*pxO+pyO*pyO+pzO*pzO);
185 cost = pzO/pO;
186 sint = 0.5*(std::sqrt(std::abs((1.0-cost)*(1.0+cost)))+std::sqrt(ptO)/pO);
187 G4double ph = pi/2.0;
188 if( pyO < 0.0 )ph = ph*1.5;
189 if( std::abs(pxO) > 0.000001 )ph = std::atan2(pyO,pxO);
190 G4double cosp = std::cos(ph);
191 G4double sinp = std::sin(ph);
192 px = cost*cosp*px - sinp*py+sint*cosp*pz;
193 py = cost*sinp*px + cosp*py+sint*sinp*pz;
194 pz = -sint*px + cost*pz;
195 }
196 else
197 {
198 if( pz < 0.0 )pz *= -1.0;
199 }
200 G4double pu = std::sqrt(px*px+py*py+pz*pz);
201 modifiedOriginal.SetMomentum( targetParticle.GetMomentum() * (p/pu) );
202 modifiedOriginal.SetKineticEnergy( ek*GeV );
203
204 targetParticle.SetMomentum(
205 originalIncident->Get4Momentum().vect() - modifiedOriginal.GetMomentum() );
206 G4double pp = targetParticle.GetMomentum().mag();
207 G4double tarmas = targetParticle.GetMass();
208 targetParticle.SetTotalEnergy( std::sqrt( pp*pp + tarmas*tarmas ) );
209
212 pd->SetDefinition( targetParticle.GetDefinition() );
213 pd->SetMomentum( targetParticle.GetMomentum() );
215 return;
216 }
217 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
218 G4int vecLen = 0;
219 vec.Initialize( 0 );
220
221 G4double theAtomicMass = targetNucleus.AtomicMass( A, Z );
222 G4double massVec[9];
223 massVec[0] = targetNucleus.AtomicMass( A+1.0, Z );
224 massVec[1] = theAtomicMass;
225 massVec[2] = 0.;
226 if (Z > 1.0)
227 massVec[2] = targetNucleus.AtomicMass( A , Z-1.0 );
228 massVec[3] = 0.;
229 if (Z > 1.0 && A > 1.0)
230 massVec[3] = targetNucleus.AtomicMass( A-1.0, Z-1.0 );
231 massVec[4] = 0.;
232 if (Z > 1.0 && A > 2.0 && A-2.0 > Z-1.0)
233 massVec[4] = targetNucleus.AtomicMass( A-2.0, Z-1.0 );
234 massVec[5] = 0.;
235 if (Z > 2.0 && A > 3.0 && A-3.0 > Z-2.0)
236 massVec[5] = targetNucleus.AtomicMass( A-3.0, Z-2.0 );
237 massVec[6] = 0.;
238 if (A > 1.0 && A-1.0 > Z)
239 massVec[6] = targetNucleus.AtomicMass( A-1.0, Z );
240 massVec[7] = massVec[3];
241 massVec[8] = 0.;
242 if (Z > 2.0 && A > 1.0)
243 massVec[8] = targetNucleus.AtomicMass( A-1.0, Z-2.0 );
244
245 theReactionDynamics.NuclearReaction( vec, vecLen, originalIncident,
246 targetNucleus, theAtomicMass, massVec );
247
250
252 for( G4int i=0; i<vecLen; ++i )
253 {
254 pd = new G4DynamicParticle();
255 pd->SetDefinition( vec[i]->GetDefinition() );
256 pd->SetMomentum( vec[i]->GetMomentum() );
258 delete vec[i];
259 }
260}
261
262
263void G4LENeutronInelastic::Cascade(
265 G4int& vecLen,
266 const G4HadProjectile *originalIncident,
267 G4ReactionProduct &currentParticle,
268 G4ReactionProduct &targetParticle,
269 G4bool &incidentHasChanged,
270 G4bool &targetHasChanged,
271 G4bool &quasiElastic )
272 {
273 // derived from original FORTRAN code CASN by H. Fesefeldt (13-Sep-1987)
274 //
275 // Neutron undergoes interaction with nucleon within a nucleus. Check if it is
276 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
277 // occurs and input particle is degraded in energy. No other particles are produced.
278 // If reaction is possible, find the correct number of pions/protons/neutrons
279 // produced using an interpolation to multiplicity data. Replace some pions or
280 // protons/neutrons by kaons or strange baryons according to the average
281 // multiplicity per Inelastic reaction.
282 //
283 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
284 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
285 const G4double targetMass = targetParticle.GetMass()/MeV;
286 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
287 targetMass*targetMass +
288 2.0*targetMass*etOriginal );
289 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
290 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
291 {
292 quasiElastic = true;
293 return;
294 }
295 static G4bool first = true;
296 const G4int numMul = 1200;
297 const G4int numSec = 60;
298 static G4double protmul[numMul], protnorm[numSec]; // proton constants
299 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
300 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
301 G4int counter, nt=0, npos=0, nneg=0, nzero=0;
302 const G4double c = 1.25;
303 const G4double b[] = { 0.35, 0.0 };
304 if( first ) // compute normalization constants, this will only be Done once
305 {
306 first = false;
307 G4int i;
308 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
309 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
310 counter = -1;
311 for( npos=0; npos<numSec/3; ++npos )
312 {
313 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
314 {
315 for( nzero=0; nzero<numSec/3; ++nzero )
316 {
317 if( ++counter < numMul )
318 {
319 nt = npos+nneg+nzero;
320 if( nt > 0 )
321 {
322 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c) /
323 ( theReactionDynamics.Factorial(1-npos+nneg)*
324 theReactionDynamics.Factorial(1+npos-nneg) );
325 protnorm[nt-1] += protmul[counter];
326 }
327 }
328 }
329 }
330 }
331 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
332 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
333 counter = -1;
334 for( npos=0; npos<(numSec/3); ++npos )
335 {
336 for( nneg=npos; nneg<=(npos+2); ++nneg )
337 {
338 for( nzero=0; nzero<numSec/3; ++nzero )
339 {
340 if( ++counter < numMul )
341 {
342 nt = npos+nneg+nzero;
343 if( (nt>0) && (nt<=numSec) )
344 {
345 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c) /
346 ( theReactionDynamics.Factorial(nneg-npos)*
347 theReactionDynamics.Factorial(2-nneg+npos) );
348 neutnorm[nt-1] += neutmul[counter];
349 }
350 }
351 }
352 }
353 }
354 for( i=0; i<numSec; ++i )
355 {
356 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
357 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
358 }
359 } // end of initialization
360
361 const G4double expxu = 82.; // upper bound for arg. of exp
362 const G4double expxl = -expxu; // lower bound for arg. of exp
365 G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
366 const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
367 G4double test, w0, wp, wt, wm;
368 if( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) )
369 {
370 // suppress high multiplicity events at low momentum
371 // only one pion will be produced
372
373 nneg = npos = nzero = 0;
374 if( targetParticle.GetDefinition() == aNeutron )
375 {
376 test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
377 w0 = test/2.0;
378 wm = test;
379 if( G4UniformRand() < w0/(w0+wm) )
380 nzero = 1;
381 else
382 nneg = 1;
383 } else { // target is a proton
384 test = std::exp( std::min( expxu, std::max( expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
385 w0 = test;
386 wp = test/2.0;
387 test = std::exp( std::min( expxu, std::max( expxl, -(-1.0+b[0])*(-1.0+b[0])/(2.0*c*c) ) ) );
388 wm = test/2.0;
389 wt = w0+wp+wm;
390 wp += w0;
391 G4double ran = G4UniformRand();
392 if( ran < w0/wt )
393 nzero = 1;
394 else if( ran < wp/wt )
395 npos = 1;
396 else
397 nneg = 1;
398 }
399 } else { // (availableEnergy >= 2.0*GeV) || (random number < supp[ieab])
400 G4double n, anpn;
401 GetNormalizationConstant( availableEnergy, n, anpn );
402 G4double ran = G4UniformRand();
403 G4double dum, excs = 0.0;
404 if( targetParticle.GetDefinition() == aProton )
405 {
406 counter = -1;
407 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
408 {
409 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
410 {
411 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
412 {
413 if( ++counter < numMul )
414 {
415 nt = npos+nneg+nzero;
416 if( nt > 0 )
417 {
418 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
419 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
420 if( std::fabs(dum) < 1.0 ) {
421 if( test >= 1.0e-10 )excs += dum*test;
422 } else {
423 excs += dum*test;
424 }
425 }
426 }
427 }
428 }
429 }
430 if( ran >= excs ) // 3 previous loops continued to the end
431 {
432 quasiElastic = true;
433 return;
434 }
435 npos--; nneg--; nzero--;
436 } else { // target must be a neutron
437 counter = -1;
438 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
439 {
440 for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
441 {
442 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
443 {
444 if( ++counter < numMul )
445 {
446 nt = npos+nneg+nzero;
447 if( (nt>=1) && (nt<=numSec) )
448 {
449 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
450 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
451 if( std::fabs(dum) < 1.0 ) {
452 if( test >= 1.0e-10 )excs += dum*test;
453 } else {
454 excs += dum*test;
455 }
456 }
457 }
458 }
459 }
460 }
461 if( ran >= excs ) // 3 previous loops continued to the end
462 {
463 quasiElastic = true;
464 return;
465 }
466 npos--; nneg--; nzero--;
467 }
468 }
469 if( targetParticle.GetDefinition() == aProton )
470 {
471 switch( npos-nneg )
472 {
473 case 0:
474 if( G4UniformRand() < 0.33 )
475 {
476 currentParticle.SetDefinitionAndUpdateE( aProton );
477 targetParticle.SetDefinitionAndUpdateE( aNeutron );
478 incidentHasChanged = true;
479 targetHasChanged = true;
480 }
481 break;
482 case 1:
483 targetParticle.SetDefinitionAndUpdateE( aNeutron );
484 targetHasChanged = true;
485 break;
486 default:
487 currentParticle.SetDefinitionAndUpdateE( aProton );
488 incidentHasChanged = true;
489 break;
490 }
491 } else { // target must be a neutron
492 switch( npos-nneg )
493 {
494 case -1: // changed from +1 by JLC, 7Jul97
495 if( G4UniformRand() < 0.5 )
496 {
497 currentParticle.SetDefinitionAndUpdateE( aProton );
498 incidentHasChanged = true;
499 } else {
500 targetParticle.SetDefinitionAndUpdateE( aProton );
501 targetHasChanged = true;
502 }
503 break;
504 case 0:
505 break;
506 default:
507 currentParticle.SetDefinitionAndUpdateE( aProton );
508 targetParticle.SetDefinitionAndUpdateE( aProton );
509 incidentHasChanged = true;
510 targetHasChanged = true;
511 break;
512 }
513 }
514 SetUpPions( npos, nneg, nzero, vec, vecLen );
515// DEBUG --> DumpFrames::DumpFrame(vec, vecLen);
516 return;
517 }
518
519 /* end of file */
520
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double mag() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
void SetMomentum(const G4ThreeVector &momentum)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
G4ReactionDynamics theReactionDynamics
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &outFile) const
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)
void SetMomentum(const G4double x, const G4double y, const G4double z)
void SetTotalEnergy(const G4double en)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
const G4double pi