Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QProtonNuclearCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28// GEANT4 tag $Name: not supported by cvs2svn $
29//
30//
31// G4 Physics class: G4QProtonNuclearCrossSection for gamma+A cross sections
32// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
33// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
34// --------------------------------------------------------------------------------
35// ****************************************************************************************
36// This Header is a part of the CHIPS physics package (author: M. Kosov)
37// ****************************************************************************************
38// Short description: CHIPS cross-sections for proton-nuclear interactions
39// -----------------------------------------------------------------------
40//
41//#define debug
42//#define pdebug
43//#define debug3
44//#define debugn
45//#define debugs
46
48#include "G4SystemOfUnits.hh"
49
50// Initialization of the
51G4double* G4QProtonNuclearCrossSection::lastLEN=0; // Pointer to the lastArray of LowEn CS
52G4double* G4QProtonNuclearCrossSection::lastHEN=0; // Pointer to the lastArray of HighEn CS
53G4int G4QProtonNuclearCrossSection::lastN=0; // The last N of calculated nucleus
54G4int G4QProtonNuclearCrossSection::lastZ=0; // The last Z of calculated nucleus
55G4double G4QProtonNuclearCrossSection::lastP=0.; // Last used in cross section Momentum
56G4double G4QProtonNuclearCrossSection::lastTH=0.; // Last threshold momentum
57G4double G4QProtonNuclearCrossSection::lastCS=0.; // Last value of the Cross Section
58G4int G4QProtonNuclearCrossSection::lastI=0; // The last position in the DAMDB
59std::vector<G4double*>* G4QProtonNuclearCrossSection::LEN = new std::vector<G4double*>;
60std::vector<G4double*>* G4QProtonNuclearCrossSection::HEN = new std::vector<G4double*>;
61
62// Returns Pointer to the G4VQCrossSection class
64{
65 static G4QProtonNuclearCrossSection theCrossSection; //**Static body of Cross Section**
66 return &theCrossSection;
67}
68
70{
71 G4int lens=LEN->size();
72 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
73 delete LEN;
74 G4int hens=HEN->size();
75 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
76 delete HEN;
77}
78
79// The main member function giving the collision cross section (P is in IU, CS is in mb)
80// Make pMom in independent units ! (Now it is MeV)
82 G4int tgZ, G4int tgN, G4int PDG)
83{
84 //A.R.23-Oct-2012 Shadowed variable static G4double tolerance=0.001; // Tolerance (0.1%) to consider as "the same mom"
85 static G4int j; // A#0f Z/N-records already tested in AMDB
86 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
87 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
88 static std::vector <G4double> colP; // Vector of last momenta for the reaction
89 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
90 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
91 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
92#ifdef pebug
93 G4cout<<"G4QPrCS::GetCS:>>> f="<<fCS<<", p="<<pMom<<", Z="<<tgZ<<"("<<lastZ<<") ,N="<<tgN
94 <<"("<<lastN<<"),PDG=2212, thresh="<<lastTH<<",Sz="<<colN.size()<<G4endl;
95#endif
96 if(PDG!=2212) G4cout<<"-Warning-G4QProtonCS::GetCS:***Not a proton***,PDG="<<PDG<<G4endl;
97 G4bool in=false; // By default the isotope must be found in the AMDB
98 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
99 {
100 in = false; // By default the isotope haven't been found in AMDB
101 lastP = 0.; // New momentum history (nothing to compare with)
102 lastN = tgN; // The last N of the calculated nucleus
103 lastZ = tgZ; // The last Z of the calculated nucleus
104 lastI = colN.size(); // Size of the Associative Memory DB in the heap
105 j = 0; // A#0f records found in DB for this projectile
106#ifdef debug
107 G4cout<<"G4QPrCS::GetCS: the amount of records in the AMDB lastI="<<lastI<<G4endl;
108#endif
109 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
110 {
111 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
112 {
113 lastI=i; // Remember the index for future fast/last use
114 lastTH =colTH[i]; // The last THreshold (A-dependent)
115#ifdef debug
116 G4cout<<"G4QPrCS::GetCS:*Found* P="<<pMom<<",Threshold="<<lastTH<<",j="<<j<<G4endl;
117#endif
118 if(pMom<=lastTH)
119 {
120#ifdef debug
121 G4cout<<"G4QPCS::GetCS:Found,P="<<pMom<<" < Threshold="<<lastTH<<",CS=0"<<G4endl;
122#endif
123 return 0.; // Energy is below the Threshold value
124 }
125 lastP =colP [i]; // Last Momentum (A-dependent)
126 lastCS =colCS[i]; // Last CrossSect (A-dependent)
127 if(std::fabs(lastP-pMom)<tolerance*pMom)
128 //if(lastP==pMom) // VI do not use tolerance
129 {
130#ifdef pdebug
131 G4cout<<"..G4QPrCS::GetCS:.DoNothing.P="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
132#endif
133 //CalculateCrossSection(fCS,-1,j,2212,lastZ,lastN,pMom); // Update param's only
134 return lastCS*millibarn; // Use theLastCS
135 }
136 in = true; // This is the case when the isotop is found in DB
137 // Momentum pMom is in IU ! @@ Units
138#ifdef debug
139 G4cout<<"G4QPrCS::G:UpdatDB P="<<pMom<<",f="<<fCS<<",lI="<<lastI<<",j="<<j<<G4endl;
140#endif
141 lastCS=CalculateCrossSection(fCS,-1,j,2212,lastZ,lastN,pMom); // read & update
142#ifdef debug
143 G4cout<<"G4QPrCS::GetCrosSec: *****> New (inDB) Calculated CS="<<lastCS<<G4endl;
144#endif
145 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
146 {
147#ifdef debug
148 G4cout<<"G4QPrCS::GetCS: New P="<<pMom<<"(CS=0) > Threshold="<<lastTH<<G4endl;
149#endif
150 lastCS=0.;
151 lastTH=pMom;
152 }
153 break; // Go out of the LOOP
154 }
155#ifdef debug
156 G4cout<<"-->G4QPrCrossSec::GetCrosSec: pPDG=2212, j="<<j<<", N="<<colN[i]
157 <<",Z["<<i<<"]="<<colZ[i]<<G4endl;
158#endif
159 j++; // Increment a#0f records found in DB
160 }
161#ifdef debug
162 G4cout<<"-?-G4QPrCS::GetCS:RC Z="<<tgZ<<",N="<<tgN<<",in="<<in<<",j="<<j<<" ?"<<G4endl;
163#endif
164 if(!in) // This isotope has not been calculated previously
165 {
166#ifdef debug
167 G4cout<<"^^^G4QPrCS::GetCS:CalcNew P="<<pMom<<", f="<<fCS<<", lastI="<<lastI<<G4endl;
168#endif
169 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
170 lastCS=CalculateCrossSection(fCS,0,j,2212,lastZ,lastN,pMom); //calculate & create
171 //if(lastCS>0.) // It means that the AMBD was initialized
172 //{
173
174 lastTH = ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
175#ifdef debug
176 G4cout<<"G4QPrCrossSection::GetCrossSect: NewThresh="<<lastTH<<",P="<<pMom<<G4endl;
177#endif
178 colN.push_back(tgN);
179 colZ.push_back(tgZ);
180 colP.push_back(pMom);
181 colTH.push_back(lastTH);
182 colCS.push_back(lastCS);
183#ifdef debug
184 G4cout<<"G4QPrCS::GetCrosSec:recCS="<<lastCS<<",lZ="<<lastN<<",lN="<<lastZ<<G4endl;
185#endif
186 //} // M.K. Presence of H1 with high threshold breaks the syncronization
187#ifdef pdebug
188 G4cout<<"G4QPrCS::GetCS:1st,P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
189#endif
190 return lastCS*millibarn;
191 } // End of creation of the new set of parameters
192 else
193 {
194#ifdef debug
195 G4cout<<"G4QPrCS::GetCS: Update lastI="<<lastI<<",j="<<j<<G4endl;
196#endif
197 colP[lastI]=pMom;
198 colCS[lastI]=lastCS;
199 }
200 } // End of parameters udate
201 else if(pMom<=lastTH)
202 {
203#ifdef debug
204 G4cout<<"G4QPrCS::GetCS: Current P="<<pMom<<" < Threshold="<<lastTH<<", CS=0"<<G4endl;
205#endif
206 return 0.; // Momentum is below the Threshold Value -> CS=0
207 }
208 else if(std::fabs(lastP-pMom)<tolerance*pMom)
209 //else if(lastP==pMom) // VI do not use tolerance
210 {
211#ifdef pdebug
212 G4cout<<"..G4QPCS::GetCS:OldNZ&P="<<lastP<<"="<<pMom<<",CS="<<lastCS*millibarn<<G4endl;
213#endif
214 return lastCS*millibarn; // Use theLastCS
215 }
216 else // It is the last used -> use the current tables
217 {
218#ifdef debug
219 G4cout<<"-!-G4QPCS::GetCS:UseCur P="<<pMom<<",f="<<fCS<<",I="<<lastI<<",j="<<j<<G4endl;
220#endif
221 lastCS=CalculateCrossSection(fCS,1,j,2212,lastZ,lastN,pMom); // Only read and UpdateDB
222 lastP=pMom;
223 }
224#ifdef debug
225 G4cout<<"==>G4QPrCS::GetCroSec: P="<<pMom<<"(MeV),CS="<<lastCS*millibarn<<"(mb)"<<G4endl;
226#endif
227 return lastCS*millibarn;
228}
229
230// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
232 G4int, G4int targZ, G4int targN, G4double Momentum)
233{
234 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
235 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
236 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
237 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
238 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
239 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
240 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
241 static const G4int nH=224; // A#of HEN points in lnE
242 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
243 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
244 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
245 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
246#ifdef debug
247 G4cout<<"G4QProtNCS::CalCS:N="<<targN<<",Z="<<targZ<<",P="<<Momentum<<">"<<THmin<<G4endl;
248#endif
249 G4double sigma=0.;
250 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
251 //G4double A=targN+targZ; // A of the target
252#ifdef debug
253 G4cout<<"G4QProtNucCS::CalCS: A="<<A<<",F="<<F<<",I="<<I<<",nL="<<nL<<",nH="<<nH<<G4endl;
254#endif
255 if(F<=0) // This isotope was not the last used isotop
256 {
257 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
258 {
259 G4int sync=LEN->size();
260 if(sync<=I) G4cout<<"*!*G4QProtonNuclCS::CalcCrossSect:Sync="<<sync<<"<="<<I<<G4endl;
261 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
262 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
263 }
264 else // This isotope wasn't calculated before => CREATE
265 {
266 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
267 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
268 // --- Instead of making a separate function ---
269 G4double P=THmiG; // Table threshold in GeV/c
270 for(G4int n=0; n<nL; n++)
271 {
272 lastLEN[n] = CrossSectionLin(targZ, targN, P);
273 P+=dPG;
274 }
275 G4double lP=milPG;
276 for(G4int n=0; n<nH; n++)
277 {
278 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
279 lP+=dlP;
280 }
281#ifdef debug
282 G4cout<<"-*->G4QPr0tNucCS::CalcCS:Tab for Z="<<targZ<<",N="<<targN<<",I="<<I<<G4endl;
283#endif
284 // --- End of possible separate function
285 // *** The synchronization check ***
286 G4int sync=LEN->size();
287 if(sync!=I)
288 {
289 G4cout<<"***G4QProtonNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
290 <<", N="<<targN<<", F="<<F<<G4endl;
291 //G4Exception("G4ProtonNuclearCS::CalculateCS:","39",FatalException,"overflow DB");
292 }
293 LEN->push_back(lastLEN); // remember the Low Energy Table
294 HEN->push_back(lastHEN); // remember the High Energy Table
295 } // End of creation of the new set of parameters
296 } // End of parameters udate
297 // =------------------= NOW the Magic Formula =-----------------------=
298#ifdef debug
299 G4cout<<"G4QPrNCS::CalcCS:lTH="<<lastTH<<",Pmi="<<Pmin<<",dP="<<dP<<",dlP="<<dlP<<G4endl;
300#endif
301 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
302 else if (Momentum<Pmin) // High Energy region
303 {
304#ifdef debug
305 G4cout<<"G4QPrNCS::CalcCS:bLEN nL="<<nL<<",TH="<<THmin<<",dP="<<dP<<G4endl;
306#endif
307 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
308#ifdef debugn
309 if(sigma<0.)
310 G4cout<<"G4QPrNuCS::CalcCS: E="<<Momentum<<",T="<<THmin<<",dP="<<dP<<G4endl;
311#endif
312 }
313 else if (Momentum<Pmax) // High Energy region
314 {
315 G4double lP=std::log(Momentum);
316#ifdef debug
317 G4cout<<"G4QProtNucCS::CalcCS: before HEN nH="<<nH<<",iE="<<milP<<",dlP="<<dlP<<G4endl;
318#endif
319 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
320 }
321 else // UHE region (calculation, not frequent)
322 {
323 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
324 sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
325 }
326#ifdef debug
327 G4cout<<"G4QProtonNuclearCrossSection::CalcCS: CS="<<sigma<<G4endl;
328#endif
329 if(sigma<0.) return 0.;
330 return sigma;
331}
332
333// Electromagnetic momentum-threshold (in MeV/c)
334G4double G4QProtonNuclearCrossSection::ThresholdMomentum(G4int tZ, G4int tN)
335{
336 static const G4double third=1./3.;
337 static const G4double pM = G4QPDGCode(2212).GetMass(); // Projectile mass in MeV
338 static const G4double tpM= pM+pM; // Doubled projectile mass (MeV)
339 G4double tA=tZ+tN;
340 if(tZ<.99 || tN<0.) return 0.;
341 else if(tZ==1 && tN==0) return 800.; // A threshold on the free proton
342 //G4double dE=1.263*tZ/(1.+std::pow(tA,third));
343 G4double dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE)
344 G4double tM=931.5*tA;
345 G4double T=dE+dE*(dE/2+pM)/tM;
346 return std::sqrt(T*(tpM+T));
347}
348
349// Calculation formula for proton-nuclear inelastic cross-section (mb) (P in GeV/c)
350G4double G4QProtonNuclearCrossSection::CrossSectionLin(G4int tZ, G4int tN, G4double P)
351{
352 G4double sigma=0.;
353 if(P<ThresholdMomentum(tZ,tN)*.001) return sigma;
354 G4double lP=std::log(P);
355 if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionFormula(tZ,tN,P,lP);}// s(pp)=0 below 350Mev/c
356 else if(tZ<97 && tN<152) // General solution
357 {
358 G4double pex=0.;
359 G4double pos=0.;
360 G4double wid=1.;
361 if(tZ==13 && tN==14) // Excited metastable states
362 {
363 pex=230.;
364 pos=.13;
365 wid=8.e-5;
366 }
367 else if(tZ<7)
368 {
369 if(tZ==6 && tN==6)
370 {
371 pex=320.;
372 pos=.14;
373 wid=7.e-6;
374 }
375 else if(tZ==5 && tN==6)
376 {
377 pex=270.;
378 pos=.17;
379 wid=.002;
380 }
381 else if(tZ==4 && tN==5)
382 {
383 pex=600.;
384 pos=.132;
385 wid=.005;
386 }
387 else if(tZ==3 && tN==4)
388 {
389 pex=280.;
390 pos=.19;
391 wid=.0025;
392 }
393 else if(tZ==3 && tN==3)
394 {
395 pex=370.;
396 pos=.171;
397 wid=.006;
398 }
399 else if(tZ==2 && tN==1)
400 {
401 pex=30.;
402 pos=.22;
403 wid=.0005;
404 }
405 }
406 sigma=CrossSectionFormula(tZ,tN,P,lP);
407 if(pex>0.)
408 {
409 G4double dp=P-pos;
410 sigma+=pex*std::exp(-dp*dp/wid);
411 }
412 }
413 else
414 {
415 G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSLin:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
416 sigma=0.;
417 }
418 if(sigma<0.) return 0.;
419 return sigma;
420}
421
422// Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
423G4double G4QProtonNuclearCrossSection::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
424{
425 G4double P=std::exp(lP);
426 return CrossSectionFormula(tZ, tN, P, lP);
427}
428// Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
429G4double G4QProtonNuclearCrossSection::CrossSectionFormula(G4int tZ, G4int tN,
430 G4double P, G4double lP)
431{
432 G4double sigma=0.;
433 if(tZ==1 && !tN) // pp interaction (from G4QuasiElasticRatios)
434 {
435 G4double El(0.),To(0.); // Uzhi
436 if(P<0.1) // Copied from G4QuasiElasticRatios Uzhi / start
437 {
438 G4double p2=P*P;
439 El=1./(0.00012+p2*0.2);
440 To=El;
441 }
442 else if(P>1000.)
443 {
444 G4double lp=std::log(P)-3.5;
445 G4double lp2=lp*lp;
446 El=0.0557*lp2+6.72;
447 To=0.3*lp2+38.2;
448 }
449 else
450 {
451 G4double p2=P*P;
452 G4double LE=1./(0.00012+p2*0.2);
453 G4double lp=std::log(P)-3.5;
454 G4double lp2=lp*lp;
455 G4double rp2=1./p2;
456 El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P);
457 To=LE+(0.3 *lp2+38.2+52.7*rp2)/(1.+2.72*rp2*rp2);
458 } // Copied from G4QuasiElasticRatios Uzhi / end
459
460/* // Uzhi
461 G4double p2=P*P;
462 G4double lp=lP-3.5;
463 G4double lp2=lp*lp;
464 G4double rp2=1./p2;
465 G4double El=(.0557*lp2+6.72+30./P)/(1.+.49*rp2/P);
466 G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2);
467*/ // Uzhi
468 sigma=To-El;
469 }
470 else if(tZ<97 && tN<152) // General solution
471 {
472 //G4double lP=std::log(P); // Already calculated
473 G4double d=lP-4.2;
474 G4double p2=P*P;
475 G4double p4=p2*p2;
476 G4double a=tN+tZ; // A of the target
477 G4double al=std::log(a);
478 G4double sa=std::sqrt(a);
479 G4double a2=a*a;
480 G4double a2s=a2*sa;
481 G4double a4=a2*a2;
482 G4double a8=a4*a4;
483 G4double a12=a8*a4;
484 G4double a16=a8*a8;
485 G4double c=(170.+3600./a2s)/(1.+65./a2s);
486 G4double dl=al-3.;
487 G4double dl2=dl*dl;
488 G4double r=.21+.62*dl2/(1.+.5*dl2);
489 G4double g_value=40.*std::exp(al*0.712)/(1.+12.2/a)/(1.+34./a2);
490 G4double e=318.+a4/(1.+.0015*a4/std::exp(al*0.09))/(1.+4.e-28*a12)+
491 8.e-18/(1./a16+1.3e-20)/(1.+1.e-21*a12);
492 G4double s_value=3.57+.009*a2/(1.+.0001*a2*a);
493 G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*a)/(1.+6.e7/a12/a2);
494 sigma=(c+d*d)/(1.+r/p4)+(g_value+e*std::exp(-s_value*P))/(1.+h/p4/p4);
495#ifdef pdebug
496 G4cout<<"G4QProtNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<g_value
497 <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl;
498#endif
499 }
500 else
501 {
502 G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
503 sigma=0.;
504 }
505 if(sigma<0.) return 0.;
506 return sigma;
507}
@ LE
Definition: Evaluator.cc:66
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
G4double GetMass()
Definition: G4QPDGCode.cc:693
static G4VQCrossSection * GetPointer()
virtual G4double GetCrossSection(G4bool fCS, G4double pMom, G4int tgZ, G4int tgN, G4int pPDG=2212)
G4double CalculateCrossSection(G4bool CS, G4int F, G4int I, G4int PDG, G4int Z, G4int N, G4double Momentum)
G4double EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double *Y)
virtual G4double ThresholdEnergy(G4int Z, G4int N, G4int PDG=0)
static G4double tolerance