Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4E1SingleProbability1.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Class G4E1SingleProbability1.cc
29//
30
33#include "Randomize.hh"
34#include "G4Pow.hh"
36#include "G4SystemOfUnits.hh"
37
38// Constructors and operators
39//
40
42{}
43
45{}
46
47// Calculate the emission probability
48//
49
51 G4double exciteE)
52{
53
54 // Calculate the probability density here
55
56 // From nuclear fragment properties and the excitation energy, calculate
57 // the probability density for photon evaporation from U to U - exciteE
58 // (U = nucleus excitation energy, exciteE = total evaporated photon
59 // energy).
60 // fragment = nuclear fragment BEFORE de-excitation
61
62 G4double theProb = 0.0;
63
64 G4int Afrag = frag.GetA_asInt();
65 G4int Zfrag = frag.GetZ_asInt();
66 G4double Uexcite = frag.GetExcitationEnergy();
67
68 if( (Uexcite-exciteE) < 0.0 || exciteE < 0 || Uexcite <= 0) return theProb;
69
70 // Need a level density parameter.
71 // For now, just use the constant approximation (not reliable near magic
72 // nuclei).
73
75 G4double aLevelDensityParam = a.LevelDensityParameter(Afrag,Zfrag,Uexcite);
76
77 G4double levelDensBef = std::exp(2.0*std::sqrt(aLevelDensityParam*Uexcite));
78 G4double levelDensAft = std::exp(2.0*std::sqrt(aLevelDensityParam*(Uexcite-exciteE)));
79
80 // Now form the probability density
81
82 // Define constants for the photoabsorption cross-section (the reverse
83 // process of our de-excitation)
84
85 G4double sigma0 = 2.5 * Afrag * millibarn; // millibarns
86
87 G4double Egdp = (40.3 / G4Pow::GetInstance()->powZ(Afrag,0.2) )*MeV;
88 G4double GammaR = 0.30 * Egdp;
89
90 const G4double normC = 1.0 / ((pi * hbarc)*(pi * hbarc));
91
92 // CD
93 //cout<<" PROB TESTS "<<G4endl;
94 //cout<<" hbarc = "<<hbarc<<G4endl;
95 //cout<<" pi = "<<pi<<G4endl;
96 //cout<<" Uexcite, exciteE = "<<Uexcite<<" "<<exciteE<<G4endl;
97 //cout<<" Uexcite, exciteE = "<<Uexcite*MeV<<" "<<exciteE*MeV<<G4endl;
98 //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
99 //cout<<" level densities = "<<levelDensBef<<" "<<levelDensAft<<G4endl;
100 //cout<<" sigma0 = "<<sigma0<<G4endl;
101 //cout<<" Egdp, GammaR = "<<Egdp<<" "<<GammaR<<G4endl;
102 //cout<<" normC = "<<normC<<G4endl;
103
104 G4double numerator = sigma0 * exciteE*exciteE * GammaR*GammaR;
105 G4double denominator = (exciteE*exciteE - Egdp*Egdp)*
106 (exciteE*exciteE - Egdp*Egdp) + GammaR*GammaR*exciteE*exciteE;
107
108 G4double sigmaAbs = numerator/denominator;
109
110 theProb = normC * sigmaAbs * exciteE*exciteE *
111 levelDensAft/levelDensBef;
112
113 // CD
114 //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
115 //cout<<" Probability = "<<theProb<<G4endl;
116
117 return theProb;
118
119}
120
122 G4double exciteE)
123{
124
125 // From nuclear fragment properties and the excitation energy, calculate
126 // the probability for photon evaporation down to the level
127 // Uexcite-exciteE.
128 // fragment = nuclear fragment BEFORE de-excitation
129
130 G4double theProb = 0.0;
131
132 G4double ScaleFactor = 1.0; // playing with scale factors
133
134 const G4double Uexcite = frag.GetExcitationEnergy();
135 G4double Uafter = Uexcite - exciteE;
136
137 G4double normC = 3.0;
138
139 const G4double upperLim = Uexcite;
140 const G4double lowerLim = Uafter;
141 const G4int numIters = 25;
142
143 // Need to integrate EmissionProbDensity from lowerLim to upperLim
144 // and multiply by normC
145
146 G4double integ = normC *
147 EmissionIntegration(frag,exciteE,lowerLim,upperLim,numIters);
148
149 if(integ > 0.0) theProb = integ;
150
151 return theProb * ScaleFactor;
152
153}
154
155G4double G4E1SingleProbability1::EmissionIntegration(const G4Fragment& frag,
156 G4double ,
157 G4double lowLim, G4double upLim,
158 G4int numIters)
159
160{
161
162 // Simple Gaussian quadrature integration
163
164 G4double x;
165 const G4double root3 = 1.0/std::sqrt(3.0);
166
167 G4double Step = (upLim-lowLim)/(2.0*numIters);
168 G4double Delta = Step*root3;
169
170 G4double mean = 0.0;
171
172 G4double theInt = 0.0;
173
174 for(G4int i = 0; i < numIters; i++) {
175
176 x = (2*i + 1)/Step;
177 G4double E1ProbDensityA = EmissionProbDensity(frag,x+Delta);
178 G4double E1ProbDensityB = EmissionProbDensity(frag,x-Delta);
179
180 mean += E1ProbDensityA + E1ProbDensityB;
181
182 }
183
184 if(mean*Step > 0.0) theInt = mean*Step;
185
186 return theInt;
187
188}
189
190
191
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double LevelDensityParameter(const G4int A, const G4int, const G4double) const
G4double EmissionProbability(const G4Fragment &frag, G4double excite)
G4double EmissionProbDensity(const G4Fragment &frag, G4double ePhoton)
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:235
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
static G4Pow * GetInstance()
Definition: G4Pow.cc:50
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180