Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HELambdaInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41#include "G4SystemOfUnits.hh"
42
44 : G4HEInelastic(name)
45{
46 vecLength = 0;
47 theMinEnergy = 20*GeV;
48 theMaxEnergy = 10*TeV;
49 MAXPART = 2048;
50 verboseLevel = 0;
51 G4cout << "WARNING: model G4HELambdaInelastic is being deprecated and will\n"
52 << "disappear in Geant4 version 10.0" << G4endl;
53}
54
55
56void G4HELambdaInelastic::ModelDescription(std::ostream& outFile) const
57{
58 outFile << "G4HELambdaInelastic is one of the High Energy Parameterized\n"
59 << "(HEP) models used to implement inelastic Lambda scattering\n"
60 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
61 << "code of H. Fesefeldt. It divides the initial collision\n"
62 << "products into backward- and forward-going clusters which are\n"
63 << "then decayed into final state hadrons. The model does not\n"
64 << "conserve energy on an event-by-event basis. It may be\n"
65 << "applied to lambdas with initial energies above 20 GeV.\n";
66}
67
68
71 G4Nucleus& targetNucleus)
72{
73 G4HEVector* pv = new G4HEVector[MAXPART];
74 const G4HadProjectile* aParticle = &aTrack;
75 const G4double A = targetNucleus.GetA_asInt();
76 const G4double Z = targetNucleus.GetZ_asInt();
77 G4HEVector incidentParticle(aParticle);
78
79 G4double atomicNumber = Z;
80 G4double atomicWeight = A;
81
82 G4int incidentCode = incidentParticle.getCode();
83 G4double incidentMass = incidentParticle.getMass();
84 G4double incidentTotalEnergy = incidentParticle.getEnergy();
85
86 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
87 // DHW 19 May 2011: variable set but not used
88
89 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
90
91 if (incidentKineticEnergy < 1.)
92 G4cout << "GHELambdaInelastic: incident energy < 1 GeV" << G4endl;
93
94 if (verboseLevel > 1) {
95 G4cout << "G4HELambdaInelastic::ApplyYourself" << G4endl;
96 G4cout << "incident particle " << incidentParticle.getName()
97 << "mass " << incidentMass
98 << "kinetic energy " << incidentKineticEnergy
99 << G4endl;
100 G4cout << "target material with (A,Z) = ("
101 << atomicWeight << "," << atomicNumber << ")" << G4endl;
102 }
103
104 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
105 atomicWeight, atomicNumber);
106 if (verboseLevel > 1)
107 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
108
109 incidentKineticEnergy -= inelasticity;
110
111 G4double excitationEnergyGNP = 0.;
112 G4double excitationEnergyDTA = 0.;
113
114 G4double excitation = NuclearExcitation(incidentKineticEnergy,
115 atomicWeight, atomicNumber,
116 excitationEnergyGNP,
117 excitationEnergyDTA);
118 if (verboseLevel > 1)
119 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
120 << excitationEnergyDTA << G4endl;
121
122 incidentKineticEnergy -= excitation;
123 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
124 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
125 // *(incidentTotalEnergy+incidentMass));
126 // DHW 19 May 2011: variable set but not used
127
128 G4HEVector targetParticle;
129 if (G4UniformRand() < atomicNumber/atomicWeight) {
130 targetParticle.setDefinition("Proton");
131 } else {
132 targetParticle.setDefinition("Neutron");
133 }
134
135 G4double targetMass = targetParticle.getMass();
136 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
137 + targetMass*targetMass
138 + 2.0*targetMass*incidentTotalEnergy);
139 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
140
141 G4bool inElastic = true;
142 vecLength = 0;
143
144 if (verboseLevel > 1)
145 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
146 << incidentCode << G4endl;
147
148 G4bool successful = false;
149
150 FirstIntInCasLambda(inElastic, availableEnergy, pv, vecLength,
151 incidentParticle, targetParticle, atomicWeight);
152
153 if (verboseLevel > 1)
154 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
155
156 if ((vecLength > 0) && (availableEnergy > 1.))
157 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
158 pv, vecLength,
159 incidentParticle, targetParticle);
160
161 HighEnergyCascading(successful, pv, vecLength,
162 excitationEnergyGNP, excitationEnergyDTA,
163 incidentParticle, targetParticle,
164 atomicWeight, atomicNumber);
165 if (!successful)
167 excitationEnergyGNP, excitationEnergyDTA,
168 incidentParticle, targetParticle,
169 atomicWeight, atomicNumber);
170 if (!successful)
171 MediumEnergyCascading(successful, pv, vecLength,
172 excitationEnergyGNP, excitationEnergyDTA,
173 incidentParticle, targetParticle,
174 atomicWeight, atomicNumber);
175
176 if (!successful)
178 excitationEnergyGNP, excitationEnergyDTA,
179 incidentParticle, targetParticle,
180 atomicWeight, atomicNumber);
181 if (!successful)
182 QuasiElasticScattering(successful, pv, vecLength,
183 excitationEnergyGNP, excitationEnergyDTA,
184 incidentParticle, targetParticle,
185 atomicWeight, atomicNumber);
186 if (!successful)
187 ElasticScattering(successful, pv, vecLength,
188 incidentParticle,
189 atomicWeight, atomicNumber);
190
191 if (!successful)
192 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
193 << G4endl;
195 delete [] pv;
197 return &theParticleChange;
198}
199
200
201void
203 const G4double availableEnergy,
204 G4HEVector pv[],
205 G4int& vecLen,
206 const G4HEVector& incidentParticle,
207 const G4HEVector& targetParticle,
208 const G4double atomicWeight)
209
210// Lambda undergoes interaction with nucleon within a nucleus. Check if it is
211// energetically possible to produce pions/kaons. In not, assume nuclear
212// excitation occurs and input particle is degraded in energy. No other
213// particles are produced. If reaction is possible, find the correct number
214// of pions/protons/neutrons produced using an interpolation to multiplicity
215// data. Replace some pions or protons/neutrons by kaons or strange baryons
216// according to the average multiplicity per inelastic reaction.
217{
218 static const G4double expxu = 82.; // upper bound for arg. of exp
219 static const G4double expxl = -expxu; // lower bound for arg. of exp
220
221 static const G4double protb = 0.7;
222 static const G4double neutb = 0.7;
223 static const G4double c = 1.25;
224
225 static const G4int numMul = 1200;
226 static const G4int numSec = 60;
227
228 G4int protonCode = Proton.getCode();
229 G4int targetCode = targetParticle.getCode();
230 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
231
232 static G4bool first = true;
233 static G4double protmul[numMul], protnorm[numSec]; // proton constants
234 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
235
236 // misc. local variables
237 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
238
239 G4int i, counter, nt, npos, nneg, nzero;
240
241 if (first) { // Computation of normalization constants will only be done once
242 first = false;
243 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
244 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
245 counter = -1;
246 for (npos = 0; npos < (numSec/3); npos++) {
247 for (nneg = std::max(0,npos-2); nneg <= (npos+1); nneg++) {
248 for (nzero = 0; nzero < numSec/3; nzero++) {
249 if (++counter < numMul) {
250 nt = npos+nneg+nzero;
251 if ((nt>0) && (nt<=numSec) ) {
252 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
253 protnorm[nt-1] += protmul[counter];
254 }
255 }
256 }
257 }
258 }
259
260 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
261 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
262 counter = -1;
263 for (npos = 0; npos < numSec/3; npos++) {
264 for( nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++ )
265 {
266 for( nzero=0; nzero<numSec/3; nzero++ )
267 {
268 if( ++counter < numMul )
269 {
270 nt = npos+nneg+nzero;
271 if( (nt>0) && (nt<=numSec) )
272 {
273 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
274 neutnorm[nt-1] += neutmul[counter];
275 }
276 }
277 }
278 }
279 }
280 for( i=0; i<numSec; i++ )
281 {
282 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
283 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
284 }
285 } // end of initialization
286
287 pv[0] = incidentParticle; // initialize the first two places
288 pv[1] = targetParticle; // the same as beam and target
289 vecLen = 2;
290
291 if (!inElastic) { // quasi-elastic scattering, no pions produced
292 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
293 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
294 if (G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) {
295 G4double ran = G4UniformRand();
296 if (targetCode == protonCode) {
297 if( ran < 0.2)
298 {
299 pv[0] = SigmaPlus;
300 pv[1] = Neutron;
301 }
302 else if(ran < 0.4)
303 {
304 pv[0] = SigmaZero;
305 }
306 else if(ran < 0.6)
307 {
308 pv[0] = Proton;
309 pv[1] = Lambda;
310 }
311 else if(ran < 0.8)
312 {
313 pv[0] = Proton;
314 pv[1] = SigmaZero;
315 }
316 else
317 {
318 pv[0] = Neutron;
319 pv[1] = SigmaPlus;
320 }
321 } else {
322 if(ran < 0.2)
323 {
324 pv[0] = SigmaZero;
325 }
326 else if(ran < 0.4)
327 {
328 pv[0] = SigmaMinus;
329 pv[1] = Proton;
330 }
331 else if(ran < 0.6)
332 {
333 pv[0] = Neutron;
334 pv[1] = Lambda;
335 }
336 else if(ran < 0.8)
337 {
338 pv[0] = Neutron;
339 pv[1] = SigmaZero;
340 }
341 else
342 {
343 pv[0] = Proton;
344 pv[1] = SigmaMinus;
345 }
346 }
347 }
348 return;
349 }
350 else if (availableEnergy <= PionPlus.getMass())
351 return;
352
353 // inelastic scattering
354 npos = 0; nneg = 0; nzero = 0;
355
356 // number of total particles vs. centre of mass Energy - 2*proton mass
357
358 G4double aleab = std::log(availableEnergy);
359 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
360 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
361
362 // normalization constant for kno-distribution.
363 // calculate first the sum of all constants, check for numerical problems.
364 G4double test, dum, anpn = 0.0;
365
366 for (nt=1; nt<=numSec; nt++) {
367 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
368 dum = pi*nt/(2.0*n*n);
369 if (std::fabs(dum) < 1.0) {
370 if( test >= 1.0e-10 )anpn += dum*test;
371 } else {
372 anpn += dum*test;
373 }
374 }
375
376 G4double ran = G4UniformRand();
377 G4double excs = 0.0;
378 if (targetCode == protonCode) {
379 counter = -1;
380 for (npos = 0; npos < numSec/3; npos++) {
381 for (nneg=std::max(0,npos-2); nneg<=(npos+1); nneg++) {
382 for (nzero=0; nzero<numSec/3; nzero++) {
383 if (++counter < numMul) {
384 nt = npos+nneg+nzero;
385 if ( (nt>0) && (nt<=numSec) ) {
386 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
387 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
388 if (std::fabs(dum) < 1.0) {
389 if( test >= 1.0e-10 )excs += dum*test;
390 } else {
391 excs += dum*test;
392 }
393 if (ran < excs) goto outOfLoop; //--------------------->
394 }
395 }
396 }
397 }
398 }
399 // 3 previous loops continued to the end
400
401 inElastic = false; // quasi-elastic scattering
402 return;
403
404 } else { // target must be a neutron
405 counter = -1;
406 for (npos=0; npos<numSec/3; npos++) {
407 for (nneg=std::max(0,npos-1); nneg<=(npos+2); nneg++) {
408 for (nzero=0; nzero<numSec/3; nzero++) {
409 if (++counter < numMul) {
410 nt = npos+nneg+nzero;
411 if ( (nt>=1) && (nt<=numSec) ) {
412 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
413 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
414 if (std::fabs(dum) < 1.0) {
415 if( test >= 1.0e-10 )excs += dum*test;
416 } else {
417 excs += dum*test;
418 }
419 if (ran < excs) goto outOfLoop; // ------------->
420 }
421 }
422 }
423 }
424 }
425 // 3 previous loops continued to the end
426 inElastic = false; // quasi-elastic scattering.
427 return;
428 }
429
430 outOfLoop: // <--------------------------------------------
431
432 ran = G4UniformRand();
433 if (targetCode == protonCode) {
434 if (npos == nneg) {
435 if (ran < 0.25)
436 {
437 }
438 else if(ran < 0.5)
439 {
440 pv[0] = SigmaZero;
441 }
442 else
443 {
444 pv[0] = SigmaPlus;
445 pv[1] = Neutron;
446 }
447 } else if (npos == (nneg+1)) {
448 if( G4UniformRand() < 0.25)
449 {
450 pv[1] = Neutron;
451 }
452 else if(ran < 0.5)
453 {
454 pv[0] = SigmaZero;
455 pv[1] = Neutron;
456 }
457 else
458 {
459 pv[0] = SigmaMinus;
460 }
461 } else if (npos == (nneg-1)) {
462 pv[0] = SigmaPlus;
463 } else {
464 pv[0] = SigmaMinus;
465 pv[1] = Neutron;
466 }
467
468 } else {
469 if (npos == nneg) {
470 if(ran < 0.5)
471 {
472 }
473 else
474 {
475 pv[0] = SigmaMinus;
476 pv[1] = Proton;
477 }
478 } else if (npos == (nneg-1)) {
479 if( ran < 0.25)
480 {
481 pv[1] = Proton;
482 }
483 else if(ran < 0.5)
484 {
485 pv[0] = SigmaZero;
486 pv[1] = Proton;
487 }
488 else
489 {
490 pv[1] = SigmaPlus;
491 }
492 } else if (npos == (1+nneg)) {
493 pv[0] = SigmaMinus;
494 } else {
495 pv[0] = SigmaPlus;
496 pv[1] = Proton;
497 }
498 }
499
500 nt = npos + nneg + nzero;
501 while (nt > 0) {
502 G4double rnd = G4UniformRand();
503 if (rnd < (G4double)npos/nt) {
504 if (npos > 0) {
505 pv[vecLen++] = PionPlus;
506 npos--;
507 }
508 } else if (rnd < (G4double)(npos+nneg)/nt) {
509 if (nneg > 0) {
510 pv[vecLen++] = PionMinus;
511 nneg--;
512 }
513 } else {
514 if (nzero > 0) {
515 pv[vecLen++] = PionZero;
516 nzero--;
517 }
518 }
519 nt = npos + nneg + nzero;
520 }
521
522 if (verboseLevel > 1) {
523 G4cout << "Particles produced: " ;
524 G4cout << pv[0].getName() << " " ;
525 G4cout << pv[1].getName() << " " ;
526 for (i = 2; i < vecLen; i++) G4cout << pv[i].getName() << " " ;
527 G4cout << G4endl;
528 }
529 return;
530}
531
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector SigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector Lambda
G4HEVector SigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector SigmaMinus
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HELambdaInelastic(const G4String &name="G4HELambdaInelastic")
virtual void ModelDescription(std::ostream &) const
void FirstIntInCasLambda(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115