Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QCoherentChargeExchange.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// ---------------- G4QCoherentChargeExchange header ----------------
29// by Mikhail Kossov, December 2003.
30// Header of G4QCoherentChargeExchange class (hA) of the CHIPS Simulation Branch
31// -------------------------------------------------------------------------------
32// This is a unique CHIPS class for the Hadron-Nuclear Elastic Scattering Prosesses
33// -------------------------------------------------------------------------------
34// At present (Jan-06) only proton-to-neutron & neutron-to-proton scattering on nuclei
35// are implemented. The scattering of mesons and nuclei on nuclei are possible...
36// The simulation is based on the CHIPS approximation of total elastic and differential
37// elastic cross sections from E=0 to the highest energyes.
38// -------------------------------------------------------------------------------
39// Short description: This class resolves an ambiguity in the definition of the
40// "inelastic" cross section. As it was shown in Ph.D.Thesis (M.Kosov,ITEP,1979)
41// it is more reasonable to subdivide the total cross-section in the coherent &
42// incoherent parts, but the measuring method for the "inelastic" cross-sections
43// consideres the lack of the projectile within the narrow forward solid angle
44// with the consequent extrapolation of these partial cross-sections, corresponding
45// to the particular solid angle, to the zero solid angle. The low angle region
46// is shadowed by the elastic (coherent) scattering. BUT the coherent charge
47// exchange (e.g. conversion p->n) is included by this procedure as a constant term
48// in the extrapolation, so the "inelastic" cross-section differes from the
49// incoherent cross-section by the value of the coherent charge exchange cross
50// section. Fortunately, this cross-sectoion drops ruther fast with energy increasing.
51// All Geant4 inelastic hadronic models (including CHIPS) simulate the incoherent
52// reactions. So the incoherent (including quasielastic) cross-section must be used
53// instead of the inelastic cross-section. For that the "inelastic" cross-section
54// must be reduced by the value of the coherent charge-exchange cross-section, which
55// is estimated (it must be tuned!) in this CHIPS class. The angular distribution
56// is made (at present) identical to the corresponding coherent-elastic scattering
57// -----------------------------------------------------------------------------------
58
59#ifndef G4QCoherentChargeExchange_hh
60#define G4QCoherentChargeExchange_hh
61
62// GEANT4 Headers
63#include "globals.hh"
64#include "G4ios.hh"
65#include "Randomize.hh"
66#include "G4VDiscreteProcess.hh"
67#include "G4Track.hh"
68#include "G4Step.hh"
69#include "G4ParticleTypes.hh"
70#include "G4VParticleChange.hh"
72#include "G4DynamicParticle.hh"
73#include "G4ThreeVector.hh"
74#include "G4LorentzVector.hh"
75
76// CHIPS Headers
77#include "G4QuasiFreeRatios.hh"
80#include "G4QIsotope.hh"
81#include "G4QCHIPSWorld.hh"
82#include "G4QHadron.hh"
83#include <vector>
84
86{
87public:
88
89 // Constructor
90 G4QCoherentChargeExchange(const G4String& processName ="CHIPS_CoherChargeExScattering");
91
92 // Destructor
94
96
97 G4double GetMeanFreePath(const G4Track& aTrack, G4double previousStepSize,
99 // It returns the MeanFreePath of the process for the current track :
100 // (energy, material)
101 // The previousStepSize and G4ForceCondition* are not used.
102 // This function overloads a virtual function of the base class.
103 // It is invoked by the ProcessManager of the Particle.
104
105
106 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep);
107 // It computes the final state of the process (at end of step),
108 // returned as a ParticleChange object.
109 // This function overloads a virtual function of the base class.
110 // It is invoked by the ProcessManager of the Particle.
111
112
114
116
117private:
118
119 // Hide assignment operator as private
121
122 // Copy constructor
124
125 // Calculate XS/t: oxs=true - only CS; xst=true - calculate XS, xst=false(oxs=f/t) - t/tm
126 G4double CalculateXSt(G4bool oxs, G4bool xst, G4double p, G4int Z, G4int N, G4int pPDG);
127
128 // BODY
129 // Static Parameters --------------------------------------------------------------------
130 static G4int nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
131 //--------------------------------- End of static parameters ---------------------------
132 // Working parameters
133 G4VQCrossSection* theCS;
134 G4LorentzVector EnMomConservation; // Residual of Energy/Momentum Cons.
135 G4int nOfNeutrons; // #of neutrons in the target nucleus
136
137 // Modifires for the reaction
138 G4double Time; // Time shift of the capture reaction
139 G4double EnergyDeposition; // Energy deposited in the reaction
140 static std::vector <G4int> ElementZ; // Z of the element(i) in theLastCalc
141 static std::vector <G4double> ElProbInMat; // SumProbabilityElements in Material
142 static std::vector <std::vector<G4int>*> ElIsoN; // N of isotope(j) of Element(i)
143 static std::vector <std::vector<G4double>*> IsoProbInEl;// SumProbabIsotopes in Element i
144};
145#endif
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)
G4bool IsApplicable(const G4ParticleDefinition &particle)
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
G4LorentzVector GetEnegryMomentumConservation()
Definition: G4Step.hh:78