Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsHyperonInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28// GEANT4 tag $Name: not supported by cvs2svn $
29//
30// ****************************************************************************************
31// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
32// Hyperon-nuclear interactions. Original author: M. Kossov
33// -------------------------------------------------------------------------------------
34//
35
37#include "G4SystemOfUnits.hh"
38#include "G4DynamicParticle.hh"
40#include "G4Lambda.hh"
41#include "G4SigmaPlus.hh"
42#include "G4SigmaMinus.hh"
43#include "G4SigmaZero.hh"
44#include "G4XiMinus.hh"
45#include "G4XiZero.hh"
46#include "G4OmegaMinus.hh"
47
48// factory
50//
52
54{
55 // Initialization of the
56 lastLEN=0; // Pointer to the lastArray of LowEn CS
57 lastHEN=0; // Pointer to the lastArray of HighEn CS
58 lastN=0; // The last N of calculated nucleus
59 lastZ=0; // The last Z of calculated nucleus
60 lastP=0.; // Last used in cross section Momentum
61 lastTH=0.; // Last threshold momentum
62 lastCS=0.; // Last value of the Cross Section
63 lastI=0; // The last position in the DAMDB
64 LEN = new std::vector<G4double*>;
65 HEN = new std::vector<G4double*>;
66}
67
69{
70 G4int lens=LEN->size();
71 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
72 delete LEN;
73
74 G4int hens=HEN->size();
75 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
76 delete HEN;
77}
78
80 const G4Element*,
81 const G4Material*)
82{
83 G4ParticleDefinition* particle = Pt->GetDefinition();
84 if (particle == G4Lambda::Lambda())
85 {
86 return true;
87 }
88 else if(particle == G4SigmaPlus::SigmaPlus())
89 {
90 return true;
91 }
92 else if(particle == G4SigmaMinus::SigmaMinus())
93 {
94 return true;
95 }
96 else if(particle == G4SigmaZero::SigmaZero())
97 {
98 return true;
99 }
100 else if(particle == G4XiMinus::XiMinus())
101 {
102 return true;
103 }
104 else if(particle == G4XiZero::XiZero())
105 {
106 return true;
107 }
108 else if(particle == G4OmegaMinus::OmegaMinus())
109 {
110 return true;
111 }
112 return false;
113}
114
115// The main member function giving the collision cross section (P is in IU, CS is in mb)
116// Make pMom in independent units ! (Now it is MeV)
118 const G4Isotope*,
119 const G4Element*,
120 const G4Material*)
121{
122 G4double pMom=Pt->GetTotalMomentum();
123 G4int tgN = A - tgZ;
124 G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
125
126 return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
127}
128
130{
131 static G4int j; // A#0f Z/N-records already tested in AMDB
132 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
133 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
134 static std::vector <G4double> colP; // Vector of last momenta for the reaction
135 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
136 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
137 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
138
139 G4bool in=false; // By default the isotope must be found in the AMDB
140 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
141 {
142 in = false; // By default the isotope haven't be found in AMDB
143 lastP = 0.; // New momentum history (nothing to compare with)
144 lastN = tgN; // The last N of the calculated nucleus
145 lastZ = tgZ; // The last Z of the calculated nucleus
146 lastI = colN.size(); // Size of the Associative Memory DB in the heap
147 j = 0; // A#0f records found in DB for this projectile
148
149 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
150 {
151 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
152 {
153 lastI=i; // Remember the index for future fast/last use
154 lastTH =colTH[i]; // The last THreshold (A-dependent)
155
156 if(pMom<=lastTH)
157 {
158 return 0.; // Energy is below the Threshold value
159 }
160 lastP =colP [i]; // Last Momentum (A-dependent)
161 lastCS =colCS[i]; // Last CrossSect (A-dependent)
162 in = true; // This is the case when the isotop is found in DB
163 // Momentum pMom is in IU ! @@ Units
164 lastCS=CalculateCrossSection(-1,j,PDG,lastZ,lastN,pMom); // read & update
165
166 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
167 {
168 lastCS=0.;
169 lastTH=pMom;
170 }
171 break; // Go out of the LOOP
172 }
173 j++; // Increment a#0f records found in DB
174 }
175 if(!in) // This isotope has not been calculated previously
176 {
177 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
178 lastCS=CalculateCrossSection(0,j,PDG,lastZ,lastN,pMom); //calculate & create
179 //if(lastCS>0.) // It means that the AMBD was initialized
180 //{
181
182 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
183 colN.push_back(tgN);
184 colZ.push_back(tgZ);
185 colP.push_back(pMom);
186 colTH.push_back(lastTH);
187 colCS.push_back(lastCS);
188 //} // M.K. Presence of H1 with high threshold breaks the syncronization
189 return lastCS*millibarn;
190 } // End of creation of the new set of parameters
191 else
192 {
193 colP[lastI]=pMom;
194 colCS[lastI]=lastCS;
195 }
196 } // End of parameters udate
197 else if(pMom<=lastTH)
198 {
199 return 0.; // Momentum is below the Threshold Value -> CS=0
200 }
201 else // It is the last used -> use the current tables
202 {
203 lastCS=CalculateCrossSection(1,j,PDG,lastZ,lastN,pMom); // Only read and UpdateDB
204 lastP=pMom;
205 }
206 return lastCS*millibarn;
207}
208
209// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
210G4double G4ChipsHyperonInelasticXS::CalculateCrossSection(G4int F, G4int I,
211 G4int, G4int targZ, G4int targN, G4double Momentum)
212{
213 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
214 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
215 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
216 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
217 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
218 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
219 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
220 static const G4int nH=224; // A#of HEN points in lnE
221 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
222 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
223 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
224 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
225 G4double sigma=0.;
226 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
227 //G4double A=targN+targZ; // A of the target
228 if(F<=0) // This isotope was not the last used isotop
229 {
230 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
231 {
232 G4int sync=LEN->size();
233 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
234 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
235 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
236 }
237 else // This isotope wasn't calculated before => CREATE
238 {
239 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
240 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
241 // --- Instead of making a separate function ---
242 G4double P=THmiG; // Table threshold in GeV/c
243 for(G4int k=0; k<nL; k++)
244 {
245 lastLEN[k] = CrossSectionLin(targZ, targN, P);
246 P+=dPG;
247 }
248 G4double lP=milPG;
249 for(G4int n=0; n<nH; n++)
250 {
251 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
252 lP+=dlP;
253 }
254 // --- End of possible separate function
255 // *** The synchronization check ***
256 G4int sync=LEN->size();
257 if(sync!=I)
258 {
259 G4cerr<<"***G4QHyperNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
260 <<", N="<<targN<<", F="<<F<<G4endl;
261 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
262 }
263 LEN->push_back(lastLEN); // remember the Low Energy Table
264 HEN->push_back(lastHEN); // remember the High Energy Table
265 } // End of creation of the new set of parameters
266 } // End of parameters udate
267 // =--------------------------= NOW the Magic Formula =------------------------------=
268 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
269 else if (Momentum<Pmin) // High Energy region
270 {
271 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
272 }
273 else if (Momentum<Pmax) // High Energy region
274 {
275 G4double lP=std::log(Momentum);
276 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
277 }
278 else // UHE region (calculation, not frequent)
279 {
280 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
281 sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
282 }
283 if(sigma<0.) return 0.;
284 return sigma;
285}
286
287// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
288G4double G4ChipsHyperonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
289{
290 G4double lP=std::log(P);
291 return CrossSectionFormula(tZ, tN, P, lP);
292}
293
294// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
295G4double G4ChipsHyperonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
296{
297 G4double P=std::exp(lP);
298 return CrossSectionFormula(tZ, tN, P, lP);
299}
300// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
301G4double G4ChipsHyperonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
302 G4double P, G4double lP)
303{
304 G4double sigma=0.;
305 if(tZ==1 && !tN) // Hyperon-P interaction from G4QuasiElastRatios
306 {
307 G4double ld=lP-3.5;
308 G4double ld2=ld*ld;
309 G4double p2=P*P;
310 G4double p4=p2*p2;
311 G4double sp=std::sqrt(P);
312 G4double El=(.0557*ld2+6.72+99./p2)/(1.+2./sp+2./p4);
313 G4double To=(.3*ld2+38.2+900./sp)/(1.+27./sp+3./p4);
314 sigma=To-El;
315 }
316 else if(tZ<97 && tN<152) // General solution
317 {
318 G4double d=lP-4.2;
319 G4double p2=P*P;
320 G4double p4=p2*p2;
321 G4double sp=std::sqrt(P);
322 G4double ssp=std::sqrt(sp);
323 G4double a=tN+tZ; // A of the target
324 G4double al=std::log(a);
325 G4double sa=std::sqrt(a);
326 G4double a2=a*a;
327 G4double a2s=a2*sa;
328 G4double a4=a2*a2;
329 G4double a8=a4*a4;
330 G4double c=(170.+3600./a2s)/(1.+65./a2s);
331 G4double gg=42.*(std::exp(al*0.8)+4.E-8*a4)/(1.+28./a)/(1.+5.E-5*a2);
332 G4double e=390.; // Defolt values for deutrons
333 G4double r=0.27;
334 G4double h=2.E-7;
335 G4double t=0.3;
336 if(tZ>1 || tN>1)
337 {
338 e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8);
339 r=0.15;
340 h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8);
341 t=(.2+.00056*a2)/(1.+a2*.0006);
342 }
343 sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*std::exp(-6.*P))/(1.+h/p4/p4);
344#ifdef pdebug
345 G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<gg
346 <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl;
347#endif
348 }
349 else
350 {
351 G4cerr<<"-Warning-G4QHyperonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
352 sigma=0.;
353 }
354 if(sigma<0.) return 0.;
355 return sigma;
356}
357
358G4double G4ChipsHyperonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
359{
360 if(DX<=0. || N<2)
361 {
362 G4cerr<<"***G4ChipsHyperonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
363 return Y[0];
364 }
365
366 G4int N2=N-2;
367 G4double d=(X-X0)/DX;
368 G4int j=static_cast<int>(d);
369 if (j<0) j=0;
370 else if(j>N2) j=N2;
371 d-=j; // excess
372 G4double yi=Y[j];
373 G4double sigma=yi+(Y[j+1]-yi)*d;
374
375 return sigma;
376}
#define G4_DECLARE_XS_FACTORY(cross_section)
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cerr
G4DLLIMPORT std::ostream G4cout
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalMomentum() const
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
static G4OmegaMinus * OmegaMinus()
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
static G4XiMinus * XiMinus()
Definition: G4XiMinus.cc:106
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106