Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GaussHermiteQ Class Reference

#include <G4GaussHermiteQ.hh>

+ Inheritance diagram for G4GaussHermiteQ:

Public Member Functions

 G4GaussHermiteQ (function pFunction, G4int nHermite)
 
G4double Integral () const
 
- Public Member Functions inherited from G4VGaussianQuadrature
 G4VGaussianQuadrature (function pFunction)
 
virtual ~G4VGaussianQuadrature ()
 
G4double GetAbscissa (G4int index) const
 
G4double GetWeight (G4int index) const
 
G4int GetNumber () const
 

Additional Inherited Members

- Protected Member Functions inherited from G4VGaussianQuadrature
G4double GammaLogarithm (G4double xx)
 
- Protected Attributes inherited from G4VGaussianQuadrature
function fFunction
 
G4doublefAbscissa
 
G4doublefWeight
 
G4int fNumber
 

Detailed Description

Definition at line 60 of file G4GaussHermiteQ.hh.

Constructor & Destructor Documentation

◆ G4GaussHermiteQ()

G4GaussHermiteQ::G4GaussHermiteQ ( function  pFunction,
G4int  nHermite 
)

Definition at line 37 of file G4GaussHermiteQ.cc.

39 : G4VGaussianQuadrature(pFunction)
40{
41 const G4double tolerance = 1.0e-12 ;
42 const G4int maxNumber = 12 ;
43
44 G4int i=1, j=1, k=1 ;
45 G4double newton0=0.;
46 G4double newton1=0.0, temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0 ;
47 G4double piInMinusQ = std::pow(pi,-0.25) ; // 1.0/std::sqrt(std::sqrt(pi)) ??
48
49 fNumber = (nHermite +1)/2 ;
51 fWeight = new G4double[fNumber] ;
52
53 for(i=1;i<=fNumber;i++)
54 {
55 if(i == 1)
56 {
57 newton0 = std::sqrt((G4double)(2*nHermite + 1)) -
58 1.85575001*std::pow((G4double)(2*nHermite + 1),-0.16666999) ;
59 }
60 else if(i == 2)
61 {
62 newton0 -= 1.14001*std::pow((G4double)nHermite,0.425999)/newton0 ;
63 }
64 else if(i == 3)
65 {
66 newton0 = 1.86002*newton0 - 0.86002*fAbscissa[0] ;
67 }
68 else if(i == 4)
69 {
70 newton0 = 1.91001*newton0 - 0.91001*fAbscissa[1] ;
71 }
72 else
73 {
74 newton0 = 2.0*newton0 - fAbscissa[i - 3] ;
75 }
76 for(k=1;k<=maxNumber;k++)
77 {
78 temp1 = piInMinusQ ;
79 temp2 = 0.0 ;
80 for(j=1;j<=nHermite;j++)
81 {
82 temp3 = temp2 ;
83 temp2 = temp1 ;
84 temp1 = newton0*std::sqrt(2.0/j)*temp2
85 - std::sqrt(((G4double)(j - 1))/j)*temp3 ;
86 }
87 temp = std::sqrt((G4double)2*nHermite)*temp2 ;
88 newton1 = newton0 ;
89 newton0 = newton1 - temp1/temp ;
90 if(std::fabs(newton0 - newton1) <= tolerance)
91 {
92 break ;
93 }
94 }
95 if(k > maxNumber)
96 {
97 G4Exception("G4GaussHermiteQ::G4GaussHermiteQ()",
98 "OutOfRange", FatalException,
99 "Too many iterations in Gauss-Hermite constructor.") ;
100 }
101 fAbscissa[i-1] = newton0 ;
102 fWeight[i-1] = 2.0/(temp*temp) ;
103 }
104}
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41

Member Function Documentation

◆ Integral()

G4double G4GaussHermiteQ::Integral ( ) const

Definition at line 112 of file G4GaussHermiteQ.cc.

113{
114 G4double integral = 0.0 ;
115 for(G4int i=0;i<fNumber;i++)
116 {
117 integral += fWeight[i]*(fFunction(fAbscissa[i])
118 + fFunction(-fAbscissa[i])) ;
119 }
120 return integral ;
121}

The documentation for this class was generated from the following files: