Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4QInelastic.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// ---------------- G4QInelastic header ----------------
29// by Mikhail Kossov, December 2003.
30// Header of G4QInelastic class (all particles) of the CHIPS Physics Pachage in GEANT4
31// ------------------------------------------------------------------------------------
32// This is a unique CHIPS class for the Hadron-Nuclear Inelastic Interaction Prosesses.
33// ------------------------------------------------------------------------------------
34// At present (Dec.04) only pi+/-, K+/- proton, neutron, antiproton and antineutron
35// collisions with protons are implemented, which are fundamental for the in matter
36// simulation of hadronic reactions. The interactions of the same particles with
37// nuclei are implemented only for the low energy (below 1 GeV) nucleon-nuclear
38// reactions only. The collisions of nuclei with nuclei are planned for the near future.
39// The simulation is based on the G4QuasmonString class, which extends the CHIPS model
40// to the highest energyes, implementing the Quasmon string with the
41// String->Quasmons->Hadrons scenario of the quark-gluon string fragmentation
42// --> CHIPS is a SU(3) event generator, so it does not include reactions with the
43// heavy c,b,t-quarks, which can be simulated only by the SU(6) QUIPS (QUark Invariant
44// Phase Space) model which is an expantion of the CHIPS.- May 2009, M.Kossov.-
45// --------------------------------------------------------------------------------------
46// Algorithms: the vacuum interactions in CHIPS are described by the quark exchange (QE)
47// process. The first step is the low energy quark exchange. If as a result of the QE one
48// or both secondary hadrons are below the pi0 threshold (roughly) they are pushed to the
49// Ground State (GS) value(s). The excited (above the pi0 production threshold) hadronic
50// state is considered as a Quasmon, which is filled in the G4QuasmonVector of the
51// G4QuasmonString class. On the second step all G4Quasmons are decayed by the
52// G4Quasmon class and fill the G4QHadronVector output. If the exchange quark is too far
53// in the rapidity space (a parameter of the G4QuasmonString class) from any of the quarks
54// of the other hadron it creates a string with the nearest in the rapidity space quark.
55// This string is converted into a Quasmon. This forces the coalescence of the residuals
56// to create another Quasmon, while the possibility exists to create more residual
57// Quasmons instead of one - one per each target-quark+projectile-antiquark(diquark) pair.
58// This possibility is tuned by the Drell-Yan pair production process. If the target (or
59// pojectile) is a nucleus, then the Quasmons are created not only in vacuum, where they
60// can be fragmented by the G4Quasmon class, but in nuclear matter of the residual target
61// (or projectile). If the Quasmons are created in nuclear matter, they are fragmented by
62// the G4QEnvironment class with the subsequent Quark Exchange nuclear fragmentation.
63// This is the present general scenario.- May 2009, Mikhail Kossov.-
64// --------------------------------------------------------------------------------
65// ****************************************************************************************
66// This Header is a part of the CHIPS Physics Package (author: M. Kosov)
67// ****************************************************************************************
68// Short description: This is a universal class for the incoherent (inelastic)
69// nuclear interactions within the framework of the CHIPS model.
70// ---------------------------------------------------------------------------
71
72#ifndef G4QInelastic_hh
73#define G4QInelastic_hh
74
75// GEANT4 Headers
76#include "globals.hh"
77#include "G4ios.hh"
78#include "Randomize.hh"
79#include "G4QThd.hh"
80#include "G4VDiscreteProcess.hh"
81#include "G4Track.hh"
82#include "G4Step.hh"
83#include "G4ParticleTypes.hh"
84#include "G4VParticleChange.hh"
86#include "G4DynamicParticle.hh"
87#include "G4ThreeVector.hh"
88#include "G4LorentzVector.hh"
89#include "G4RandomDirection.hh"
90
91// CHIPS Headers
92#include "G4QEnvironment.hh"
93#include "G4VQCrossSection.hh"
94#include "G4QIsotope.hh"
117#include "G4QIonIonCollision.hh"
118#include "G4QFragmentation.hh"
119#include "G4QuasiFreeRatios.hh"
120#include "G4QPDGToG4Particle.hh"
121
123{
124public:
125
126 // Constructor
127 G4QInelastic(const G4String& processName ="CHIPS_Inelastic");
128
129 // Destructor
131
133
134 G4double GetMeanFreePath(const G4Track& aTrack, G4double previousStepSize,
136 // It returns the MeanFreePath of the process for the current track :
137 // (energy, material)
138 // The previousStepSize and G4ForceCondition* are not used.
139 // This function overloads a virtual function of the base class.
140 // It is invoked by the ProcessManager of the Particle.
141
142
143 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep);
144 // It computes the final state of the process (at end of step),
145 // returned as a ParticleChange object.
146 // This function overloads a virtual function of the base class.
147 // It is invoked by the ProcessManager of the Particle.
148
149 // Fake void functions
153
154 // Internal Energy-Momentum Residual
156
157 // Number of neutrons in the target nucleus (primary)
159
160 // Static functions ---------------------------------------------------------------------
161 static void SetManual();
162 static void SetStandard();
163 static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3,
164 G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1.,
165 G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false,
166 G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.);
167 static void SetPhotNucBias(G4double phnB=1.);
168 static void SetWeakNucBias(G4double ccnB=1.);
169 //--- End of static member functions ----------------------------------------------------
170
171 G4double GetPhotNucBias(){return photNucBias;}
172 G4double GetWeakNucBias(){return weakNucBias;}
173
174private:
175
176 // Hide assignment operator as private
177 G4QInelastic& operator=(const G4QInelastic &right);
178
179 // Copy constructor
181
182 // Random direction in two dimentions pair(first=sin(phi), second=cos(phi))
183 std::pair<G4double,G4double> Random2DDirection();
184
185 // BODY
186 // Static Parameters --------------------------------------------------------------------
187 static G4bool manualFlag; // If false then standard parameters are used
188 static G4int nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
189 // -> Parameters of the G4Quasmon class:
190 static G4double Temperature; // Quasmon Temperature
191 static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon
192 static G4double EtaEtaprime; // Part of eta-prime in all etas
193 // -> Parameters of the G4QNucleus class:
194 static G4double freeNuc; // probability of the quasi-free baryon on surface
195 static G4double freeDib; // probability of the quasi-free dibaryon on surface
196 static G4double clustProb; // clusterization probability in dense region
197 static G4double mediRatio; // relative vacuum hadronization probability
198 // -> Parameters of the G4QEnvironment class:
199 static G4bool EnergyFlux; // Flag for Energy Flux use instead of Multy Quasmon
200 static G4double SolidAngle; // Part of Solid Angle to capture secondaries(@@A-dep)
201 static G4double PiPrThresh; // Pion Production Threshold for gammas
202 static G4double M2ShiftVir; // Shift for M2=-Q2=m_pi^2 of the virtual gamma
203 static G4double DiNuclMass; // Double Nucleon Mass for virtual normalization
204 // -> Biasing parameters:
205 static G4double photNucBias; // Biasing parameter for photo-($e,mu,tau)Nuclear reactions
206 static G4double weakNucBias; // Biasing parameter for Charged Currents (nu,mu) reactions
207 //--------------------------------- End of static parameters ---------------------------
208 // Working parameters
209 G4VQCrossSection* theCS;
210 G4LorentzVector EnMomConservation; // Residual of Energy/Momentum Cons.
211 G4int nOfNeutrons; // #of neutrons in the target nucleus
212
213 // Modifires for the reaction
214 G4double Time; // Time shift of the capture reaction
215 G4double EnergyDeposition; // Energy deposited in the reaction
216 static std::vector <G4int> ElementZ; // Z of the element(i) in theLastCalc
217 static std::vector <G4double> ElProbInMat; // SumProbabilityElements in Material
218 static std::vector <std::vector<G4int>*> ElIsoN; // N of isotope(j) of Element(i)
219 static std::vector <std::vector<G4double>*> IsoProbInEl;// SumProbabIsotopes in Element i
220};
221#endif
G4double condition(const G4ErrorSymMatrix &m)
G4ForceCondition
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
G4double GetWeakNucBias()
static void SetStandard()
Definition: G4QInelastic.cc:95
G4int GetNumberOfNeutronsInTarget()
void BuildPhysicsTable(const G4ParticleDefinition &)
static void SetManual()
Definition: G4QInelastic.cc:94
void PrintInfoDefinition()
static void SetPhotNucBias(G4double phnB=1.)
void SetPhysicsTableBining(G4double, G4double, G4int)
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3, G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1., G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false, G4double piTh=141.4, G4double mpi2=20000., G4double dinum=1880.)
Definition: G4QInelastic.cc:98
G4double GetPhotNucBias()
static void SetWeakNucBias(G4double ccnB=1.)
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)
G4bool IsApplicable(const G4ParticleDefinition &particle)
G4LorentzVector GetEnegryMomentumConservation()
Definition: G4Step.hh:78