Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ProjectileFragmentCrossSection.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27#ifndef G4ProjectileFragmentCrossSection_h
28#define G4ProjectileFragmentCrossSection_h 1
29
30#include <cmath>
31#include <iostream>
32
33// Implements Physical Review C61, 034607 (2000)
34// Rewrite starting from EPAX Version 2
35
37{
38 public:
40 {
41 p_S[1] = -2.38; // scale factor for xsect in barn
42 p_S[2] = 0.27;
43
44 p_P[1] = -2.5840E+00; // slope of mass yield curve
45 p_P[2] = -7.5700E-03;
46
47 p_Delta[1] = -1.0870E+00; // centroid rel. to beta-stability
48 p_Delta[2] = +3.0470E-02;
49 p_Delta[3] = +2.1353E-04;
50 p_Delta[4] = +7.1350E+01;
51
52 p_R[1] = +0.885E+00; // width parameter R
53 p_R[2] = -9.8160E-03;
54
55 p_Un[1] = 1.65; // slope par. n-rich ride of Z distr.
56
57 p_Up[1] = 1.7880; // slope par. p-rich ride of Z distr.
58 p_Up[2] = +4.7210E-03;
59 p_Up[3] = -1.3030E-05;
60
61 p_mn[1] = 0.400; // memory effect n-rich projectiles
62 p_mn[2] = 0.600;
63
64 p_mp[1] = -10.25; // memory effect p-rich projectiles
65 p_mp[2] = +10.1;
66
67 corr_d[1] = -25.0; // correction close to proj.: centroid dzp
68 corr_d[2] = 0.800;
69 corr_r[1] = +20.0; // correction close to proj.: width R
70 corr_r[2] = 0.820;
71 corr_y[1] = 200.0; // correction close to proj.: Yield_a
72 corr_y[2] = 0.90;
73 }
74
76 {
77// calculate mass yield
78 G4double Ap13 = std::pow(Ap, 1./3.);
79 G4double At13 = std::pow(At, 1./3.);
80 G4double S = p_S[2] * (At13 + Ap13 + p_S[1]);
81// cout << "debug0 "<<S<<" "<<At13<<" "<<Ap13<<" "<<p_S[1]<<" "<<p_S[2]<<endl;
82 G4double p = std::exp(p_P[2]*Ap + p_P[1]);
83 G4double yield_a = p * S * std::exp(-p * (Ap - A));
84 cout << "debug1 "<<yield_a<<endl;
85// modification close to projectile
86 G4double f_mod_y=1.0;
87 if (A/Ap > corr_y[2])
88 {
89 f_mod_y=corr_y[1]*std::pow(A/Ap-corr_y[2], 2) + 1.0;
90 }
91 yield_a= yield_a * f_mod_y;
92 cout << "debug1 "<<yield_a<<endl;
93
94// calculate maximum of charge dispersion zprob
95 G4double zbeta = A/(1.98+0.0155*std::pow(A, (2./3.)));
96 G4double zbeta_p = Ap/(1.98+0.0155*std::pow(Ap, (2./3.)));
97 G4double delta;
98 if(A > p_Delta[4])
99 {
100 delta = p_Delta[1] + p_Delta[2]*A;
101 }
102 else
103 {
104 delta = p_Delta[3]*A*A;
105 }
106
107// modification close to projectile
108 G4double f_mod=1.0;
109 if(A/Ap > corr_d[2])
110 {
111 f_mod = corr_d[1]*std::pow(A/Ap-corr_d[2], 2) + 1.0;
112 }
113 delta = delta*f_mod;
114 G4double zprob = zbeta+delta;
115
116// correction for proton- and neutron-rich projectiles
117 G4double dq;
118 if((Zp-zbeta_p)>0)
119 {
120 dq = std::exp(p_mp[1] + G4double(A)/G4double(Ap)*p_mp[2]);
121 cout << "dq "<<A<<" "<<Ap<<" "<<p_mp[1]
122 <<" "<<p_mp[2]<<" "<<dq<<" "<<p_mp[1] + A/Ap*p_mp[2]<<endl;
123 }
124 else
125 {
126 dq = p_mn[1]*std::pow(A/Ap, 2.0) + p_mn[2]*std::pow(A/Ap, 4.0);
127 }
128 zprob = zprob + dq * (Zp-zbeta_p);
129
130// small corr. since Xe-129 and Pb-208 are not on Z_beta line
131 zprob = zprob + 0.0020*A;
132 cout <<"zprob "<<A<<" "<<dq<<" "<<Zp<<" "<<zbeta_p
133 <<" "<<zbeta<<" "<<delta<<endl;
134
135// calculate width parameter R
136 G4double r = std::exp(p_R[1] + p_R[2]*A);
137
138// modification close to projectile
139 f_mod=1.0;
140 if (A/Ap > corr_r[2])
141 {
142 f_mod = corr_r[1]*Ap*std::pow(A/Ap-corr_r[2], 4.0)+1.0;
143 }
144 r = r*f_mod;
145
146// change width according to dev. from beta-stability
147 if ((Zp-zbeta_p) < 0.0)
148 {
149 r=r*(1.0-0.0833*std::abs(Zp-zbeta_p));
150 }
151
152// calculate slope parameters u_n, u_p
153 G4double u_n = p_Un[1];
154 G4double u_p = p_Up[1] + p_Up[2]*A + p_Up[3]*A*A;
155
156// calculate charge dispersion
157 G4double expo, fract;
158 if((zprob-Z) > 0)
159 {
160// neutron-rich
161 expo = -r*std::pow(std::abs(zprob-Z), u_n);
162 fract = std::exp(expo)*std::sqrt(r/3.14159);
163 }
164 else
165 {
166// proton-rich
167 expo = -r*std::pow(std::abs(zprob-Z), u_p);
168 fract = std::exp(expo)*std::sqrt(r/3.14159);
169 cout << "1 "<<expo<<" "<<r<<" "<<zprob<<" "<<Z<<" "<<u_p<<endl;
170// go to exponential slope
171 G4double dfdz = 1.2 + 0.647*std::pow(A/2.,0.3);
172 G4double z_exp = zprob + dfdz * std::log(10.) / (2.*r);
173 if( Z>z_exp )
174 {
175 expo = -r*std::pow(std::abs(zprob-z_exp), u_p);
176 fract = std::exp(expo)*std::sqrt(r/3.14159)
177 / std::pow(std::pow(10, dfdz), Z-z_exp);
178 }
179 }
180
181 cout << "debug "<<fract<<" "<<yield_a<<endl;
182 G4double epaxv2=fract*yield_a;
183 return epaxv2;
184 }
185
186 void testMe()
187 {
189 cout << i.doit(58, 28, 9, 4, 49, 28) << endl;
190 // Sigma = 9.800163E-13 b
191 }
192 private:
193 G4double p_S[3];
194 G4double p_P[3];
195 G4double p_Delta[5];
196 G4double p_R[3];
197 G4double p_Un[2];
198 G4double p_Up[4];
199 G4double p_mn[3];
200 G4double p_mp[3];
201 G4double corr_d[3];
202 G4double corr_r[3];
203 G4double corr_y[3];
204};
205#endif
double G4double
Definition: G4Types.hh:64
G4double doit(G4double Ap, G4double Zp, G4double At, G4double Zt, G4double A, G4double Z)