Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermoreGammaConversionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Author: Sebastien Incerti
27// 22 January 2012
28// on base of G4LivermoreGammaConversionModel
29
32#include "G4SystemOfUnits.hh"
33
34//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
35
36using namespace std;
37
38//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
39
41 const G4String& nam)
42:G4VEmModel(nam),smallEnergy(2.*MeV),isInitialised(false),maxZ(99)
43{
44 fParticleChange = 0;
45
46 lowEnergyLimit = 2.0*electron_mass_c2;
47 data.resize(maxZ+1,0);
48
49 verboseLevel= 0;
50 // Verbosity scale for debugging purposes:
51 // 0 = nothing
52 // 1 = calculation of cross sections, file openings...
53 // 2 = entering in methods
54
55 if(verboseLevel > 0)
56 {
57 G4cout << "G4LivermoreGammaConversionModel is constructed " << G4endl;
58 }
59}
60
61//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
62
64{
65 for(G4int i=0; i<=maxZ; ++i) { delete data[i]; }
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
69
70void
72 const G4DataVector& cuts)
73{
74 if (verboseLevel > 1)
75 {
76 G4cout << "Calling Initialise() of G4LivermoreGammaConversionModel." << G4endl
77 << "Energy range: "
78 << LowEnergyLimit() / MeV << " MeV - "
79 << HighEnergyLimit() / GeV << " GeV"
80 << G4endl;
81 }
82
83 // Initialise element selector
84
85 InitialiseElementSelectors(particle, cuts);
86
87 // Access to elements
88
89 char* path = getenv("G4LEDATA");
90
91 G4ProductionCutsTable* theCoupleTable =
93 G4int numOfCouples = theCoupleTable->GetTableSize();
94
95 for(G4int i=0; i<numOfCouples; ++i)
96 {
97 const G4Material* material =
98 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
99 const G4ElementVector* theElementVector = material->GetElementVector();
100 G4int nelm = material->GetNumberOfElements();
101
102 for (G4int j=0; j<nelm; ++j)
103 {
104
105 G4int Z = (G4int)(*theElementVector)[j]->GetZ();
106 if(Z < 1) { Z = 1; }
107 else if(Z > maxZ) { Z = maxZ; }
108 if(!data[Z]) { ReadData(Z, path); }
109 }
110 }
111 //
112
113 if(isInitialised) { return; }
114 fParticleChange = GetParticleChangeForGamma();
115 isInitialised = true;
116}
117
118//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
119
120void G4LivermoreGammaConversionModel::ReadData(size_t Z, const char* path)
121{
122 if (verboseLevel > 1)
123 {
124 G4cout << "Calling ReadData() of G4LivermoreGammaConversionModel"
125 << G4endl;
126 }
127
128 if(data[Z]) { return; }
129
130 const char* datadir = path;
131
132 if(!datadir)
133 {
134 datadir = getenv("G4LEDATA");
135 if(!datadir)
136 {
137 G4Exception("G4LivermoreGammaConversionModel::ReadData()",
138 "em0006",FatalException,
139 "Environment variable G4LEDATA not defined");
140 return;
141 }
142 }
143
144 //
145
146 data[Z] = new G4LPhysicsFreeVector();
147
148 // Activation of spline interpolation
149 data[Z] ->SetSpline(true);
150 //
151
152 std::ostringstream ost;
153 ost << datadir << "/livermore/pair/pp-cs-" << Z <<".dat";
154 std::ifstream fin(ost.str().c_str());
155
156 if( !fin.is_open())
157 {
159 ed << "G4LivermoreGammaConversionModel data file <" << ost.str().c_str()
160 << "> is not opened!" << G4endl;
161 G4Exception("G4LivermoreGammaConversionModel::ReadData()",
162 "em0003",FatalException,
163 ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
164 return;
165 }
166
167 else
168 {
169
170 if(verboseLevel > 3) { G4cout << "File " << ost.str()
171 << " is opened by G4LivermoreGammaConversionModel" << G4endl;}
172
173 data[Z]->Retrieve(fin, true);
174 }
175
176
177}
178
179//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
180
183 G4double GammaEnergy,
186{
187 if (verboseLevel > 1)
188 {
189 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModel"
190 << G4endl;
191 }
192
193 if (GammaEnergy < lowEnergyLimit) { return 0.0; }
194
195 G4double xs = 0.0;
196
197 G4int intZ=G4int(Z);
198
199 if(intZ < 1 || intZ > maxZ) { return xs; }
200
201 G4LPhysicsFreeVector* pv = data[intZ];
202
203 // element was not initialised
204 if(!pv)
205 {
206 char* path = getenv("G4LEDATA");
207 ReadData(intZ, path);
208 pv = data[intZ];
209 if(!pv) { return xs; }
210 }
211 // x-section is taken from the table
212 xs = pv->Value(GammaEnergy);
213
214 if(verboseLevel > 0)
215 {
216 G4int n = pv->GetVectorLength() - 1;
217 G4cout << "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)=" << GammaEnergy/MeV << G4endl;
218 G4cout << " cs (Geant4 internal unit)=" << xs << G4endl;
219 G4cout << " -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl;
220 G4cout << " -> last cs value in EADL data file (iu) =" << (*pv)[n] << G4endl;
221 G4cout << "*********************************************************" << G4endl;
222 }
223
224 return xs;
225
226}
227
228//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
229
231 std::vector<G4DynamicParticle*>* fvect,
232 const G4MaterialCutsCouple* couple,
233 const G4DynamicParticle* aDynamicGamma,
235{
236
237// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
238// cross sections with Coulomb correction. A modified version of the random
239// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
240
241// Note 1 : Effects due to the breakdown of the Born approximation at low
242// energy are ignored.
243// Note 2 : The differential cross section implicitly takes account of
244// pair creation in both nuclear and atomic electron fields. However triplet
245// prodution is not generated.
246
247 if (verboseLevel > 1)
248 G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModel" << G4endl;
249
250 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
251 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
252
253 G4double epsilon ;
254 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
255
256 // Do it fast if photon energy < 2. MeV
257 if (photonEnergy < smallEnergy )
258 {
259 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
260 }
261 else
262 {
263 // Select randomly one element in the current material
264
265 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
266 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
267
268 if (element == 0)
269 {
270 G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - element = 0"
271 << G4endl;
272 return;
273 }
274 G4IonisParamElm* ionisation = element->GetIonisation();
275 if (ionisation == 0)
276 {
277 G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - ionisation = 0"
278 << G4endl;
279 return;
280 }
281
282 // Extract Coulomb factor for this Element
283 G4double fZ = 8. * (ionisation->GetlogZ3());
284 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
285
286 // Limits of the screening variable
287 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
288 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
289 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
290
291 // Limits of the energy sampling
292 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
293 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
294 G4double epsilonRange = 0.5 - epsilonMin ;
295
296 // Sample the energy rate of the created electron (or positron)
297 G4double screen;
298 G4double gReject ;
299
300 G4double f10 = ScreenFunction1(screenMin) - fZ;
301 G4double f20 = ScreenFunction2(screenMin) - fZ;
302 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
303 G4double normF2 = std::max(1.5 * f20,0.);
304
305 do
306 {
307 if (normF1 / (normF1 + normF2) > G4UniformRand() )
308 {
309 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.333333) ;
310 screen = screenFactor / (epsilon * (1. - epsilon));
311 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
312 }
313 else
314 {
315 epsilon = epsilonMin + epsilonRange * G4UniformRand();
316 screen = screenFactor / (epsilon * (1 - epsilon));
317 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
318 }
319 } while ( gReject < G4UniformRand() );
320
321 } // End of epsilon sampling
322
323 // Fix charges randomly
324
325 G4double electronTotEnergy;
326 G4double positronTotEnergy;
327
328 if (G4UniformRand() > 0.5)
329 {
330 electronTotEnergy = (1. - epsilon) * photonEnergy;
331 positronTotEnergy = epsilon * photonEnergy;
332 }
333 else
334 {
335 positronTotEnergy = (1. - epsilon) * photonEnergy;
336 electronTotEnergy = epsilon * photonEnergy;
337 }
338
339 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
340 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
341 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
342
343 G4double u;
344 const G4double a1 = 0.625;
345 G4double a2 = 3. * a1;
346 // G4double d = 27. ;
347
348 // if (9. / (9. + d) > G4UniformRand())
349 if (0.25 > G4UniformRand())
350 {
351 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
352 }
353 else
354 {
355 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
356 }
357
358 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
359 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
360 G4double phi = twopi * G4UniformRand();
361
362 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
363 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
364
365
366 // Kinematics of the created pair:
367 // the electron and positron are assumed to have a symetric angular
368 // distribution with respect to the Z axis along the parent photon
369
370 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
371
372 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
373 electronDirection.rotateUz(photonDirection);
374
376 electronDirection,
377 electronKineEnergy);
378
379 // The e+ is always created
380 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
381
382 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
383 positronDirection.rotateUz(photonDirection);
384
385 // Create G4DynamicParticle object for the particle2
387 positronDirection,
388 positronKineEnergy);
389 // Fill output vector
390 fvect->push_back(particle1);
391 fvect->push_back(particle2);
392
393 // kill incident photon
394 fParticleChange->SetProposedKineticEnergy(0.);
395 fParticleChange->ProposeTrackStatus(fStopAndKill);
396
397}
398
399//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
400
402G4LivermoreGammaConversionModel::ScreenFunction1(G4double screenVariable)
403{
404 // Compute the value of the screening function 3*phi1 - phi2
405
406 G4double value;
407
408 if (screenVariable > 1.)
409 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
410 else
411 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
412
413 return value;
414}
415
416//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
417
419G4LivermoreGammaConversionModel::ScreenFunction2(G4double screenVariable)
420{
421 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
422
423 G4double value;
424
425 if (screenVariable > 1.)
426 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
427 else
428 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
429
430 return value;
431}
432
std::vector< G4Element * > G4ElementVector
@ FatalException
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetfCoulomb() const
Definition: G4Element.hh:201
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:209
G4double GetlogZ3() const
G4double GetZ3() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
G4LivermoreGammaConversionModel(const G4ParticleDefinition *p=0, const G4String &nam="LivermoreConversion")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4double Value(G4double theEnergy)
size_t GetVectorLength() const
static G4Positron * Positron()
Definition: G4Positron.cc:94
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
static G4ProductionCutsTable * GetProductionCutsTable()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:123
void ProposeTrackStatus(G4TrackStatus status)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76