Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolyconeSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29//
30// --------------------------------------------------------------------
31// GEANT 4 class source file
32//
33//
34// G4PolyconeSide.cc
35//
36// Implementation of the face representing one conical side of a polycone
37//
38// --------------------------------------------------------------------
39
40#include "G4PolyconeSide.hh"
41#include "meshdefs.hh"
43#include "G4IntersectingCone.hh"
44#include "G4ClippablePolygon.hh"
45#include "G4AffineTransform.hh"
46#include "G4SolidExtentList.hh"
48
49#include "Randomize.hh"
50
51//
52// Constructor
53//
54// Values for r1,z1 and r2,z2 should be specified in clockwise
55// order in (r,z).
56//
58 const G4PolyconeSideRZ *tail,
59 const G4PolyconeSideRZ *head,
60 const G4PolyconeSideRZ *nextRZ,
61 G4double thePhiStart,
62 G4double theDeltaPhi,
63 G4bool thePhiIsOpen,
64 G4bool isAllBehind )
65 : ncorners(0), corners(0)
66{
68 fSurfaceArea = 0.0;
69 fPhi.first = G4ThreeVector(0,0,0);
70 fPhi.second= 0.0;
71
72 //
73 // Record values
74 //
75 r[0] = tail->r; z[0] = tail->z;
76 r[1] = head->r; z[1] = head->z;
77
78 phiIsOpen = thePhiIsOpen;
79 if (phiIsOpen)
80 {
81 deltaPhi = theDeltaPhi;
82 startPhi = thePhiStart;
83
84 //
85 // Set phi values to our conventions
86 //
87 while (deltaPhi < 0.0) deltaPhi += twopi;
88 while (startPhi < 0.0) startPhi += twopi;
89
90 //
91 // Calculate corner coordinates
92 //
93 ncorners = 4;
95
96 corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
97 tail->r*std::sin(startPhi), tail->z );
98 corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
99 head->r*std::sin(startPhi), head->z );
100 corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
101 tail->r*std::sin(startPhi+deltaPhi), tail->z );
102 corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
103 head->r*std::sin(startPhi+deltaPhi), head->z );
104 }
105 else
106 {
107 deltaPhi = twopi;
108 startPhi = 0.0;
109 }
110
111 allBehind = isAllBehind;
112
113 //
114 // Make our intersecting cone
115 //
116 cone = new G4IntersectingCone( r, z );
117
118 //
119 // Calculate vectors in r,z space
120 //
121 rS = r[1]-r[0]; zS = z[1]-z[0];
122 length = std::sqrt( rS*rS + zS*zS);
123 rS /= length; zS /= length;
124
125 rNorm = +zS;
126 zNorm = -rS;
127
128 G4double lAdj;
129
130 prevRS = r[0]-prevRZ->r;
131 prevZS = z[0]-prevRZ->z;
132 lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
133 prevRS /= lAdj;
134 prevZS /= lAdj;
135
136 rNormEdge[0] = rNorm + prevZS;
137 zNormEdge[0] = zNorm - prevRS;
138 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
139 rNormEdge[0] /= lAdj;
140 zNormEdge[0] /= lAdj;
141
142 nextRS = nextRZ->r-r[1];
143 nextZS = nextRZ->z-z[1];
144 lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
145 nextRS /= lAdj;
146 nextZS /= lAdj;
147
148 rNormEdge[1] = rNorm + nextZS;
149 zNormEdge[1] = zNorm - nextRS;
150 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
151 rNormEdge[1] /= lAdj;
152 zNormEdge[1] /= lAdj;
153}
154
155
156//
157// Fake default constructor - sets only member data and allocates memory
158// for usage restricted to object persistency.
159//
161 : startPhi(0.), deltaPhi(0.), phiIsOpen(false), allBehind(false),
162 cone(0), rNorm(0.), zNorm(0.), rS(0.), zS(0.), length(0.),
163 prevRS(0.), prevZS(0.), nextRS(0.), nextZS(0.), ncorners(0), corners(0),
164 kCarTolerance(0.), fSurfaceArea(0.)
165{
166 r[0] = r[1] = 0.;
167 z[0] = z[1] = 0.;
168 rNormEdge[0]= rNormEdge[1] = 0.;
169 zNormEdge[0]= zNormEdge[1] = 0.;
170}
171
172
173//
174// Destructor
175//
177{
178 delete cone;
179 if (phiIsOpen) { delete [] corners; }
180}
181
182
183//
184// Copy constructor
185//
187 : G4VCSGface(), ncorners(0), corners(0)
188{
189 CopyStuff( source );
190}
191
192
193//
194// Assignment operator
195//
197{
198 if (this == &source) { return *this; }
199
200 delete cone;
201 if (phiIsOpen) { delete [] corners; }
202
203 CopyStuff( source );
204
205 return *this;
206}
207
208
209//
210// CopyStuff
211//
213{
214 r[0] = source.r[0];
215 r[1] = source.r[1];
216 z[0] = source.z[0];
217 z[1] = source.z[1];
218
219 startPhi = source.startPhi;
220 deltaPhi = source.deltaPhi;
221 phiIsOpen = source.phiIsOpen;
222 allBehind = source.allBehind;
223
224 kCarTolerance = source.kCarTolerance;
225 fSurfaceArea = source.fSurfaceArea;
226
227 cone = new G4IntersectingCone( *source.cone );
228
229 rNorm = source.rNorm;
230 zNorm = source.zNorm;
231 rS = source.rS;
232 zS = source.zS;
233 length = source.length;
234 prevRS = source.prevRS;
235 prevZS = source.prevZS;
236 nextRS = source.nextRS;
237 nextZS = source.nextZS;
238
239 rNormEdge[0] = source.rNormEdge[0];
240 rNormEdge[1] = source.rNormEdge[1];
241 zNormEdge[0] = source.zNormEdge[0];
242 zNormEdge[1] = source.zNormEdge[1];
243
244 if (phiIsOpen)
245 {
246 ncorners = 4;
248
249 corners[0] = source.corners[0];
250 corners[1] = source.corners[1];
251 corners[2] = source.corners[2];
252 corners[3] = source.corners[3];
253 }
254}
255
256
257//
258// Intersect
259//
261 const G4ThreeVector &v,
262 G4bool outgoing,
263 G4double surfTolerance,
264 G4double &distance,
265 G4double &distFromSurface,
266 G4ThreeVector &normal,
267 G4bool &isAllBehind )
268{
269 G4double s1, s2;
270 G4double normSign = outgoing ? +1 : -1;
271
272 isAllBehind = allBehind;
273
274 //
275 // Check for two possible intersections
276 //
277 G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278 if (nside == 0) return false;
279
280 //
281 // Check the first side first, since it is (supposed to be) closest
282 //
283 G4ThreeVector hit = p + s1*v;
284
285 if (PointOnCone( hit, normSign, p, v, normal ))
286 {
287 //
288 // Good intersection! What about the normal?
289 //
290 if (normSign*v.dot(normal) > 0)
291 {
292 //
293 // We have a valid intersection, but it could very easily
294 // be behind the point. To decide if we tolerate this,
295 // we have to see if the point p is on the surface near
296 // the intersecting point.
297 //
298 // What does it mean exactly for the point p to be "near"
299 // the intersection? It means that if we draw a line from
300 // p to the hit, the line remains entirely within the
301 // tolerance bounds of the cone. To test this, we can
302 // ask if the normal is correct near p.
303 //
304 G4double pr = p.perp();
305 if (pr < DBL_MIN) pr = DBL_MIN;
306 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307 if (normSign*v.dot(pNormal) > 0)
308 {
309 //
310 // p and intersection in same hemisphere
311 //
312 G4double distOutside2;
313 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314 if (distOutside2 < surfTolerance*surfTolerance)
315 {
316 if (distFromSurface > -surfTolerance)
317 {
318 //
319 // We are just inside or away from the
320 // surface. Accept *any* value of distance.
321 //
322 distance = s1;
323 return true;
324 }
325 }
326 }
327 else
328 distFromSurface = s1;
329
330 //
331 // Accept positive distances
332 //
333 if (s1 > 0)
334 {
335 distance = s1;
336 return true;
337 }
338 }
339 }
340
341 if (nside==1) return false;
342
343 //
344 // Well, try the second hit
345 //
346 hit = p + s2*v;
347
348 if (PointOnCone( hit, normSign, p, v, normal ))
349 {
350 //
351 // Good intersection! What about the normal?
352 //
353 if (normSign*v.dot(normal) > 0)
354 {
355 G4double pr = p.perp();
356 if (pr < DBL_MIN) pr = DBL_MIN;
357 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358 if (normSign*v.dot(pNormal) > 0)
359 {
360 G4double distOutside2;
361 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362 if (distOutside2 < surfTolerance*surfTolerance)
363 {
364 if (distFromSurface > -surfTolerance)
365 {
366 distance = s2;
367 return true;
368 }
369 }
370 }
371 else
372 distFromSurface = s2;
373
374 if (s2 > 0)
375 {
376 distance = s2;
377 return true;
378 }
379 }
380 }
381
382 //
383 // Better luck next time
384 //
385 return false;
386}
387
388
390{
391 G4double normSign = outgoing ? -1 : +1;
392 G4double distFrom, distOut2;
393
394 //
395 // We have two tries for each hemisphere. Try the closest first.
396 //
397 distFrom = normSign*DistanceAway( p, false, distOut2 );
398 if (distFrom > -0.5*kCarTolerance )
399 {
400 //
401 // Good answer
402 //
403 if (distOut2 > 0)
404 return std::sqrt( distFrom*distFrom + distOut2 );
405 else
406 return std::fabs(distFrom);
407 }
408
409 //
410 // Try second side.
411 //
412 distFrom = normSign*DistanceAway( p, true, distOut2 );
413 if (distFrom > -0.5*kCarTolerance)
414 {
415
416 if (distOut2 > 0)
417 return std::sqrt( distFrom*distFrom + distOut2 );
418 else
419 return std::fabs(distFrom);
420 }
421
422 return kInfinity;
423}
424
425
426//
427// Inside
428//
430 G4double tolerance,
431 G4double *bestDistance )
432{
433 //
434 // Check both sides
435 //
436 G4double distFrom[2], distOut2[2], dist2[2];
437 G4double edgeRZnorm[2];
438
439 distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm );
440 distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 );
441
442 dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
443 dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
444
445 //
446 // Who's closest?
447 //
448 G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
449
450 *bestDistance = std::sqrt( dist2[i] );
451
452 //
453 // Okay then, inside or out?
454 //
455 if ( (std::fabs(edgeRZnorm[i]) < tolerance)
456 && (distOut2[i] < tolerance*tolerance) )
457 return kSurface;
458 else if (edgeRZnorm[i] < 0)
459 return kInside;
460 else
461 return kOutside;
462}
463
464
465//
466// Normal
467//
469 G4double *bestDistance )
470{
471 if (p == G4ThreeVector(0.,0.,0.)) { return p; }
472
473 G4double dFrom, dOut2;
474
475 dFrom = DistanceAway( p, false, dOut2 );
476
477 *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
478
479 G4double rds = p.perp();
480 if (rds!=0.) { return G4ThreeVector(rNorm*p.x()/rds,rNorm*p.y()/rds,zNorm); }
481 return G4ThreeVector( 0.,0., zNorm ).unit();
482}
483
484
485//
486// Extent
487//
489{
490 if (axis.perp2() < DBL_MIN)
491 {
492 //
493 // Special case
494 //
495 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
496 }
497
498 //
499 // Is the axis pointing inside our phi gap?
500 //
501 if (phiIsOpen)
502 {
503 G4double phi = GetPhi(axis);
504 while( phi < startPhi ) phi += twopi;
505
506 if (phi > deltaPhi+startPhi)
507 {
508 //
509 // Yeah, looks so. Make four three vectors defining the phi
510 // opening
511 //
512 G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
513 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
514 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
515 cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
516 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
517 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
518
519 G4double ad = axis.dot(a),
520 bd = axis.dot(b),
521 cd = axis.dot(c),
522 dd = axis.dot(d);
523
524 if (bd > ad) ad = bd;
525 if (cd > ad) ad = cd;
526 if (dd > ad) ad = dd;
527
528 return ad;
529 }
530 }
531
532 //
533 // Check either end
534 //
535 G4double aPerp = axis.perp();
536
537 G4double a = aPerp*r[0] + axis.z()*z[0];
538 G4double b = aPerp*r[1] + axis.z()*z[1];
539
540 if (b > a) a = b;
541
542 return a;
543}
544
545
546
547//
548// CalculateExtent
549//
550// See notes in G4VCSGface
551//
553 const G4VoxelLimits &voxelLimit,
554 const G4AffineTransform &transform,
555 G4SolidExtentList &extentList )
556{
557 G4ClippablePolygon polygon;
558
559 //
560 // Here we will approximate (ala G4Cons) and divide our conical section
561 // into segments, like G4Polyhedra. When doing so, the radius
562 // is extented far enough such that the segments always lie
563 // just outside the surface of the conical section we are
564 // approximating.
565 //
566
567 //
568 // Choose phi size of our segment(s) based on constants as
569 // defined in meshdefs.hh
570 //
571 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
572 if (numPhi < kMinMeshSections)
573 numPhi = kMinMeshSections;
574 else if (numPhi > kMaxMeshSections)
575 numPhi = kMaxMeshSections;
576
577 G4double sigPhi = deltaPhi/numPhi;
578
579 //
580 // Determine radius factor to keep segments outside
581 //
582 G4double rFudge = 1.0/std::cos(0.5*sigPhi);
583
584 //
585 // Decide which radius to use on each end of the side,
586 // and whether a transition mesh is required
587 //
588 // {r0,z0} - Beginning of this side
589 // {r1,z1} - Ending of this side
590 // {r2,z0} - Beginning of transition piece connecting previous
591 // side (and ends at beginning of this side)
592 //
593 // So, order is 2 --> 0 --> 1.
594 // -------
595 //
596 // r2 < 0 indicates that no transition piece is required
597 //
598 G4double r0, r1, r2, z0, z1;
599
600 r2 = -1; // By default: no transition piece
601
602 if (rNorm < -DBL_MIN)
603 {
604 //
605 // This side faces *inward*, and so our mesh has
606 // the same radius
607 //
608 r1 = r[1];
609 z1 = z[1];
610 z0 = z[0];
611 r0 = r[0];
612
613 r2 = -1;
614
615 if (prevZS > DBL_MIN)
616 {
617 //
618 // The previous side is facing outwards
619 //
620 if ( prevRS*zS - prevZS*rS > 0 )
621 {
622 //
623 // Transition was convex: build transition piece
624 //
625 if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
626 }
627 else
628 {
629 //
630 // Transition was concave: short this side
631 //
632 FindLineIntersect( z0, r0, zS, rS,
633 z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
634 }
635 }
636
637 if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
638 {
639 //
640 // The next side is facing outwards, forming a
641 // concave transition: short this side
642 //
643 FindLineIntersect( z1, r1, zS, rS,
644 z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
645 }
646 }
647 else if (rNorm > DBL_MIN)
648 {
649 //
650 // This side faces *outward* and is given a boost to
651 // it radius
652 //
653 r0 = r[0]*rFudge;
654 z0 = z[0];
655 r1 = r[1]*rFudge;
656 z1 = z[1];
657
658 if (prevZS < -DBL_MIN)
659 {
660 //
661 // The previous side is facing inwards
662 //
663 if ( prevRS*zS - prevZS*rS > 0 )
664 {
665 //
666 // Transition was convex: build transition piece
667 //
668 if (r[0] > DBL_MIN) r2 = r[0];
669 }
670 else
671 {
672 //
673 // Transition was concave: short this side
674 //
675 FindLineIntersect( z0, r0, zS, rS*rFudge,
676 z0, r[0], prevZS, prevRS, z0, r0 );
677 }
678 }
679
680 if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
681 {
682 //
683 // The next side is facing inwards, forming a
684 // concave transition: short this side
685 //
686 FindLineIntersect( z1, r1, zS, rS*rFudge,
687 z1, r[1], nextZS, nextRS, z1, r1 );
688 }
689 }
690 else
691 {
692 //
693 // This side is perpendicular to the z axis (is a disk)
694 //
695 // Whether or not r0 needs a rFudge factor depends
696 // on the normal of the previous edge. Similar with r1
697 // and the next edge. No transition piece is required.
698 //
699 r0 = r[0];
700 r1 = r[1];
701 z0 = z[0];
702 z1 = z[1];
703
704 if (prevZS > DBL_MIN) r0 *= rFudge;
705 if (nextZS > DBL_MIN) r1 *= rFudge;
706 }
707
708 //
709 // Loop
710 //
711 G4double phi = startPhi,
712 cosPhi = std::cos(phi),
713 sinPhi = std::sin(phi);
714
715 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
716 v1( r1*cosPhi, r1*sinPhi, z1 ),
717 v2, w0, w1, w2;
718 transform.ApplyPointTransform( v0 );
719 transform.ApplyPointTransform( v1 );
720
721 if (r2 >= 0)
722 {
723 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
724 transform.ApplyPointTransform( v2 );
725 }
726
727 do
728 {
729 phi += sigPhi;
730 if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff
731 cosPhi = std::cos(phi),
732 sinPhi = std::sin(phi);
733
734 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
735 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
736 transform.ApplyPointTransform( w0 );
737 transform.ApplyPointTransform( w1 );
738
739 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
740
741 //
742 // Build polygon, taking special care to keep the vertices
743 // in order
744 //
745 polygon.ClearAllVertices();
746
747 polygon.AddVertexInOrder( v0 );
748 polygon.AddVertexInOrder( v1 );
749 polygon.AddVertexInOrder( w1 );
750 polygon.AddVertexInOrder( w0 );
751
752 //
753 // Get extent
754 //
755 if (polygon.PartialClip( voxelLimit, axis ))
756 {
757 //
758 // Get dot product of normal with target axis
759 //
760 polygon.SetNormal( deltaV.cross(v1-v0).unit() );
761
762 extentList.AddSurface( polygon );
763 }
764
765 if (r2 >= 0)
766 {
767 //
768 // Repeat, for transition piece
769 //
770 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
771 transform.ApplyPointTransform( w2 );
772
773 polygon.ClearAllVertices();
774
775 polygon.AddVertexInOrder( v2 );
776 polygon.AddVertexInOrder( v0 );
777 polygon.AddVertexInOrder( w0 );
778 polygon.AddVertexInOrder( w2 );
779
780 if (polygon.PartialClip( voxelLimit, axis ))
781 {
782 polygon.SetNormal( deltaV.cross(v0-v2).unit() );
783
784 extentList.AddSurface( polygon );
785 }
786
787 v2 = w2;
788 }
789
790 //
791 // Next vertex
792 //
793 v0 = w0;
794 v1 = w1;
795 } while( --numPhi > 0 );
796
797 //
798 // We are almost done. But, it is important that we leave no
799 // gaps in the surface of our solid. By using rFudge, however,
800 // we've done exactly that, if we have a phi segment.
801 // Add two additional faces if necessary
802 //
803 if (phiIsOpen && rNorm > DBL_MIN)
804 {
805 cosPhi = std::cos(startPhi);
806 sinPhi = std::sin(startPhi);
807
808 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
809 a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
810 b0( r0*cosPhi, r0*sinPhi, z[0] ),
811 b1( r1*cosPhi, r1*sinPhi, z[1] );
812
813 transform.ApplyPointTransform( a0 );
814 transform.ApplyPointTransform( a1 );
815 transform.ApplyPointTransform( b0 );
816 transform.ApplyPointTransform( b1 );
817
818 polygon.ClearAllVertices();
819
820 polygon.AddVertexInOrder( a0 );
821 polygon.AddVertexInOrder( a1 );
822 polygon.AddVertexInOrder( b0 );
823 polygon.AddVertexInOrder( b1 );
824
825 if (polygon.PartialClip( voxelLimit , axis))
826 {
827 G4ThreeVector normal( sinPhi, -cosPhi, 0 );
828 polygon.SetNormal( transform.TransformAxis( normal ) );
829
830 extentList.AddSurface( polygon );
831 }
832
833 cosPhi = std::cos(startPhi+deltaPhi);
834 sinPhi = std::sin(startPhi+deltaPhi);
835
836 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
837 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
838 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
839 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
840 transform.ApplyPointTransform( a0 );
841 transform.ApplyPointTransform( a1 );
842 transform.ApplyPointTransform( b0 );
843 transform.ApplyPointTransform( b1 );
844
845 polygon.ClearAllVertices();
846
847 polygon.AddVertexInOrder( a0 );
848 polygon.AddVertexInOrder( a1 );
849 polygon.AddVertexInOrder( b0 );
850 polygon.AddVertexInOrder( b1 );
851
852 if (polygon.PartialClip( voxelLimit, axis ))
853 {
854 G4ThreeVector normal( -sinPhi, cosPhi, 0 );
855 polygon.SetNormal( transform.TransformAxis( normal ) );
856
857 extentList.AddSurface( polygon );
858 }
859 }
860
861 return;
862}
863
864//
865// GetPhi
866//
867// Calculate Phi for a given 3-vector (point), if not already cached for the
868// same point, in the attempt to avoid consecutive computation of the same
869// quantity
870//
872{
873 G4double val=0.;
874
875 if (fPhi.first != p)
876 {
877 val = p.phi();
878 fPhi.first = p;
879 fPhi.second = val;
880 }
881 else
882 {
883 val = fPhi.second;
884 }
885 return val;
886}
887
888//
889// DistanceAway
890//
891// Calculate distance of a point from our conical surface, including the effect
892// of any phi segmentation
893//
894// Arguments:
895// p - (in) Point to check
896// opposite - (in) If true, check opposite hemisphere (see below)
897// distOutside - (out) Additional distance outside the edges of the surface
898// edgeRZnorm - (out) if negative, point is inside
899//
900// return value = distance from the conical plane, if extrapolated beyond edges,
901// signed by whether the point is in inside or outside the shape
902//
903// Notes:
904// * There are two answers, depending on which hemisphere is considered.
905//
907 G4bool opposite,
908 G4double &distOutside2,
909 G4double *edgeRZnorm )
910{
911 //
912 // Convert our point to r and z
913 //
914 G4double rx = p.perp(), zx = p.z();
915
916 //
917 // Change sign of r if opposite says we should
918 //
919 if (opposite) rx = -rx;
920
921 //
922 // Calculate return value
923 //
924 G4double deltaR = rx - r[0], deltaZ = zx - z[0];
925 G4double answer = deltaR*rNorm + deltaZ*zNorm;
926
927 //
928 // Are we off the surface in r,z space?
929 //
930 G4double q = deltaR*rS + deltaZ*zS;
931 if (q < 0)
932 {
933 distOutside2 = q*q;
934 if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
935 }
936 else if (q > length)
937 {
938 distOutside2 = sqr( q-length );
939 if (edgeRZnorm)
940 {
941 deltaR = rx - r[1];
942 deltaZ = zx - z[1];
943 *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
944 }
945 }
946 else
947 {
948 distOutside2 = 0;
949 if (edgeRZnorm) *edgeRZnorm = answer;
950 }
951
952 if (phiIsOpen)
953 {
954 //
955 // Finally, check phi
956 //
957 G4double phi = GetPhi(p);
958 while( phi < startPhi ) phi += twopi;
959
960 if (phi > startPhi+deltaPhi)
961 {
962 //
963 // Oops. Are we closer to the start phi or end phi?
964 //
965 G4double d1 = phi-startPhi-deltaPhi;
966 while( phi > startPhi ) phi -= twopi;
967 G4double d2 = startPhi-phi;
968
969 if (d2 < d1) d1 = d2;
970
971 //
972 // Add result to our distance
973 //
974 G4double dist = d1*rx;
975
976 distOutside2 += dist*dist;
977 if (edgeRZnorm)
978 {
979 *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
980 }
981 }
982 }
983
984 return answer;
985}
986
987
988//
989// PointOnCone
990//
991// Decide if a point is on a cone and return normal if it is
992//
994 G4double normSign,
995 const G4ThreeVector &p,
996 const G4ThreeVector &v,
997 G4ThreeVector &normal )
998{
999 G4double rx = hit.perp();
1000 //
1001 // Check radial/z extent, as appropriate
1002 //
1003 if (!cone->HitOn( rx, hit.z() )) return false;
1004
1005 if (phiIsOpen)
1006 {
1007 G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1008 //
1009 // Check phi segment. Here we have to be careful
1010 // to use the standard method consistent with
1011 // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1012 //
1013 G4double phi = GetPhi(hit);
1014 while( phi < startPhi-phiTolerant ) phi += twopi;
1015
1016 if (phi > startPhi+deltaPhi+phiTolerant) return false;
1017
1018 if (phi > startPhi+deltaPhi-phiTolerant)
1019 {
1020 //
1021 // Exact treatment
1022 //
1023 G4ThreeVector qx = p + v;
1024 G4ThreeVector qa = qx - corners[2],
1025 qb = qx - corners[3];
1026 G4ThreeVector qacb = qa.cross(qb);
1027
1028 if (normSign*qacb.dot(v) < 0) return false;
1029 }
1030 else if (phi < phiTolerant)
1031 {
1032 G4ThreeVector qx = p + v;
1033 G4ThreeVector qa = qx - corners[1],
1034 qb = qx - corners[0];
1035 G4ThreeVector qacb = qa.cross(qb);
1036
1037 if (normSign*qacb.dot(v) < 0) return false;
1038 }
1039 }
1040
1041 //
1042 // We have a good hit! Calculate normal
1043 //
1044 if (rx < DBL_MIN)
1045 normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1046 else
1047 normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1048 return true;
1049}
1050
1051
1052//
1053// FindLineIntersect
1054//
1055// Decide the point at which two 2-dimensional lines intersect
1056//
1057// Equation of line: x = x1 + s*tx1
1058// y = y1 + s*ty1
1059//
1060// It is assumed that the lines are *not* parallel
1061//
1063 G4double tx1, G4double ty1,
1064 G4double x2, G4double y2,
1065 G4double tx2, G4double ty2,
1066 G4double &x, G4double &y )
1067{
1068 //
1069 // The solution is a simple linear equation
1070 //
1071 G4double deter = tx1*ty2 - tx2*ty1;
1072
1073 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1074 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1075
1076 //
1077 // We want the answer to not depend on which order the
1078 // lines were specified. Take average.
1079 //
1080 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1081 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1082}
1083
1084//
1085// Calculate surface area for GetPointOnSurface()
1086//
1088{
1089 if(fSurfaceArea==0)
1090 {
1091 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1092 fSurfaceArea *= 0.5*(deltaPhi);
1093 }
1094 return fSurfaceArea;
1095}
1096
1097//
1098// GetPointOnFace
1099//
1101{
1102 G4double x,y,zz;
1103 G4double rr,phi,dz,dr;
1104 dr=r[1]-r[0];dz=z[1]-z[0];
1106 rr=r[0]+dr*G4UniformRand();
1107
1108 x=rr*std::cos(phi);
1109 y=rr*std::sin(phi);
1110
1111 // PolyconeSide has a Ring Form
1112 //
1113 if (dz==0.)
1114 {
1115 zz=z[0];
1116 }
1117 else
1118 {
1119 if(dr==0.) // PolyconeSide has a Tube Form
1120 {
1121 zz = z[0]+dz*G4UniformRand();
1122 }
1123 else
1124 {
1125 zz = z[0]+(rr-r[0])*dz/dr;
1126 }
1127 }
1128
1129 return G4ThreeVector(x,y,zz);
1130}
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4UniformRand()
Definition: Randomize.hh:53
double z() const
Hep3Vector unit() const
double phi() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double dot(const Hep3Vector &) const
double perp2() const
double perp() const
G4ThreeVector TransformAxis(const G4ThreeVector &axis) const
void ApplyPointTransform(G4ThreeVector &vec) const
virtual G4bool PartialClip(const G4VoxelLimits &voxelLimit, const EAxis IgnoreMe)
virtual void AddVertexInOrder(const G4ThreeVector vertex)
virtual void ClearAllVertices()
void SetNormal(const G4ThreeVector &newNormal)
G4double GetSurfaceTolerance() const
static G4GeometryTolerance * GetInstance()
G4double ZHi() const
G4bool HitOn(const G4double r, const G4double z)
G4double ZLo() const
G4int LineHitsCone(const G4ThreeVector &p, const G4ThreeVector &v, G4double *s1, G4double *s2)
G4double Extent(const G4ThreeVector axis)
G4double zNormEdge[2]
G4ThreeVector GetPointOnFace()
G4ThreeVector Normal(const G4ThreeVector &p, G4double *bestDistance)
G4ThreeVector * corners
G4double GetPhi(const G4ThreeVector &p)
G4double SurfaceArea()
static void FindLineIntersect(G4double x1, G4double y1, G4double tx1, G4double ty1, G4double x2, G4double y2, G4double tx2, G4double ty2, G4double &x, G4double &y)
virtual ~G4PolyconeSide()
void CopyStuff(const G4PolyconeSide &source)
G4PolyconeSide(const G4PolyconeSideRZ *prevRZ, const G4PolyconeSideRZ *tail, const G4PolyconeSideRZ *head, const G4PolyconeSideRZ *nextRZ, G4double phiStart, G4double deltaPhi, G4bool phiIsOpen, G4bool isAllBehind=false)
void CalculateExtent(const EAxis axis, const G4VoxelLimits &voxelLimit, const G4AffineTransform &tranform, G4SolidExtentList &extentList)
G4bool Intersect(const G4ThreeVector &p, const G4ThreeVector &v, G4bool outgoing, G4double surfTolerance, G4double &distance, G4double &distFromSurface, G4ThreeVector &normal, G4bool &isAllBehind)
EInside Inside(const G4ThreeVector &p, G4double tolerance, G4double *bestDistance)
G4IntersectingCone * cone
G4double DistanceAway(const G4ThreeVector &p, G4bool opposite, G4double &distOutside2, G4double *rzNorm=0)
G4bool PointOnCone(const G4ThreeVector &hit, G4double normSign, const G4ThreeVector &p, const G4ThreeVector &v, G4ThreeVector &normal)
G4double rNormEdge[2]
G4PolyconeSide & operator=(const G4PolyconeSide &source)
G4double Distance(const G4ThreeVector &p, G4bool outgoing)
void AddSurface(const G4ClippablePolygon &surface)
EAxis
Definition: geomdefs.hh:54
EInside
Definition: geomdefs.hh:58
@ kInside
Definition: geomdefs.hh:58
@ kOutside
Definition: geomdefs.hh:58
@ kSurface
Definition: geomdefs.hh:58
const G4int kMaxMeshSections
Definition: meshdefs.hh:46
const G4int kMinMeshSections
Definition: meshdefs.hh:45
const G4double kMeshAngleDefault
Definition: meshdefs.hh:42
T sqr(const T &x)
Definition: templates.hh:145
#define DBL_MIN
Definition: templates.hh:75