Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LEKaonMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: Low Energy KaonMinus Inelastic Process
29// J.L. Chuma, TRIUMF, 12-Feb-1997
30// J.P.Wellisch 23-Apr-97: bug-hunting (missing initialization of npos,nneg,nzero
31// fixed)
32// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
33
34#include <iostream>
35
38#include "G4SystemOfUnits.hh"
39#include "Randomize.hh"
40
43{
44 SetMinEnergy(0.0);
45 SetMaxEnergy(25.*GeV);
46 G4cout << "WARNING: model G4LEKaonMinusInelastic is being deprecated and will\n"
47 << "disappear in Geant4 version 10.0" << G4endl;
48}
49
50
51void G4LEKaonMinusInelastic::ModelDescription(std::ostream& outFile) const
52{
53 outFile << "G4LEKaonMinusInelastic is one of the Low Energy Parameterized\n"
54 << "(LEP) models used to implement inelastic K- scattering\n"
55 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
56 << "code of H. Fesefeldt. It divides the initial collision\n"
57 << "products into backward- and forward-going clusters which are\n"
58 << "then decayed into final state hadrons. The model does not\n"
59 << "conserve energy on an event-by-event basis. It may be\n"
60 << "applied to kaons with initial energies between 0 and 25\n"
61 << "GeV.\n";
62}
63
64
67 G4Nucleus& targetNucleus)
68{
69 const G4HadProjectile *originalIncident = &aTrack;
70 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
74 return &theParticleChange;
75 }
76
77 // create the target particle
78 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
79 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
80
81 if (verboseLevel > 1) {
82 const G4Material *targetMaterial = aTrack.GetMaterial();
83 G4cout << "G4LEKaonMinusInelastic::ApplyYourself called" << G4endl;
84 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
85 G4cout << "target material = " << targetMaterial->GetName() << ", ";
86 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
87 << G4endl;
88 }
89
90 G4ReactionProduct currentParticle(const_cast<G4ParticleDefinition*>(originalIncident->GetDefinition()) );
91 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
92 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
93
94 // Fermi motion and evaporation
95 // As of Geant3, the Fermi energy calculation had not been done
96 G4double ek = originalIncident->GetKineticEnergy();
97 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
98
99 G4double tkin = targetNucleus.Cinema( ek );
100 ek += tkin;
101 currentParticle.SetKineticEnergy( ek );
102 G4double et = ek + amas;
103 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
104 G4double pp = currentParticle.GetMomentum().mag();
105 if (pp > 0.0) {
106 G4ThreeVector momentum = currentParticle.GetMomentum();
107 currentParticle.SetMomentum( momentum * (p/pp) );
108 }
109
110 // calculate black track energies
111 tkin = targetNucleus.EvaporationEffects( ek );
112 ek -= tkin;
113 currentParticle.SetKineticEnergy( ek );
114 et = ek + amas;
115 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
116 pp = currentParticle.GetMomentum().mag();
117 if (pp > 0.0) {
118 G4ThreeVector momentum = currentParticle.GetMomentum();
119 currentParticle.SetMomentum( momentum * (p/pp) );
120 }
121
122 G4ReactionProduct modifiedOriginal = currentParticle;
123
124 currentParticle.SetSide(1); // incident always goes in forward hemisphere
125 targetParticle.SetSide(-1); // target always goes in backward hemisphere
126 G4bool incidentHasChanged = false;
127 G4bool targetHasChanged = false;
128 G4bool quasiElastic = false;
129 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
130 G4int vecLen = 0;
131 vec.Initialize(0);
132
133 const G4double cutOff = 0.1*MeV;
134 if (currentParticle.GetKineticEnergy() > cutOff)
135 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
136 incidentHasChanged, targetHasChanged, quasiElastic);
137
138 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
139 modifiedOriginal, targetNucleus, currentParticle,
140 targetParticle, incidentHasChanged, targetHasChanged,
141 quasiElastic);
142
143 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
144
145 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
146
147 delete originalTarget;
148 return &theParticleChange;
149}
150
151
152void G4LEKaonMinusInelastic::Cascade(
154 G4int& vecLen,
155 const G4HadProjectile *originalIncident,
156 G4ReactionProduct &currentParticle,
157 G4ReactionProduct &targetParticle,
158 G4bool &incidentHasChanged,
159 G4bool &targetHasChanged,
160 G4bool &quasiElastic )
161{
162 // derived from original FORTRAN code CASKM by H. Fesefeldt (13-Sep-1987)
163 //
164 // K- undergoes interaction with nucleon within a nucleus. Check if it is
165 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
166 // occurs and input particle is degraded in energy. No other particles are produced.
167 // If reaction is possible, find the correct number of pions/protons/neutrons
168 // produced using an interpolation to multiplicity data. Replace some pions or
169 // protons/neutrons by kaons or strange baryons according to the average
170 // multiplicity per Inelastic reaction.
171 //
172 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
173 const G4double etOriginal = originalIncident->GetTotalEnergy();
174 const G4double pOriginal = originalIncident->GetTotalMomentum();
175 const G4double targetMass = targetParticle.GetMass();
176 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
177 targetMass*targetMass +
178 2.0*targetMass*etOriginal );
179 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
180
181 static G4bool first = true;
182 const G4int numMul = 1200;
183 const G4int numSec = 60;
184 static G4double protmul[numMul], protnorm[numSec]; // proton constants
185 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
186 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
187 G4int nt(0), npos(0), nneg(0), nzero(0);
188 const G4double c = 1.25;
189 const G4double b[] = { 0.70, 0.70 };
190 if( first ) // compute normalization constants, this will only be Done once
191 {
192 first = false;
193 G4int i;
194 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
195 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
196 G4int counter = -1;
197 for( npos=0; npos<(numSec/3); ++npos )
198 {
199 for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
200 {
201 for( nzero=0; nzero<numSec/3; ++nzero )
202 {
203 if( ++counter < numMul )
204 {
205 nt = npos+nneg+nzero;
206 if( (nt>0) && (nt<=numSec) )
207 {
208 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
209 protnorm[nt-1] += protmul[counter];
210 }
211 }
212 }
213 }
214 }
215 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
216 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
217 counter = -1;
218 for( npos=0; npos<numSec/3; ++npos )
219 {
220 for( nneg=npos; nneg<=(npos+2); ++nneg )
221 {
222 for( nzero=0; nzero<numSec/3; ++nzero )
223 {
224 if( ++counter < numMul )
225 {
226 nt = npos+nneg+nzero;
227 if( (nt>0) && (nt<=numSec) )
228 {
229 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
230 neutnorm[nt-1] += neutmul[counter];
231 }
232 }
233 }
234 }
235 }
236 for( i=0; i<numSec; ++i )
237 {
238 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
239 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
240 }
241 } // end of initialization
242
243 const G4double expxu = 82.; // upper bound for arg. of exp
244 const G4double expxl = -expxu; // lower bound for arg. of exp
257 const G4double cech[] = {1.,1.,1.,0.70,0.60,0.55,0.35,0.25,0.18,0.15};
258 G4int iplab = G4int(std::min( 9.0, pOriginal/GeV*5.0 ));
259 if( (pOriginal <= 2.0*GeV) && (G4UniformRand() < cech[iplab]) )
260 {
261 npos = nneg = nzero = nt = 0;
262 iplab = G4int(std::min( 19.0, pOriginal/GeV*10.0 ));
263 const G4double cnk0[] = {0.17,0.18,0.17,0.24,0.26,0.20,0.22,0.21,0.34,0.45,
264 0.58,0.55,0.36,0.29,0.29,0.32,0.32,0.33,0.33,0.33};
265 if( G4UniformRand() <= cnk0[iplab] )
266 {
267 quasiElastic = true;
268 if( targetParticle.GetDefinition() == aProton )
269 {
270 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
271 incidentHasChanged = true;
272 targetParticle.SetDefinitionAndUpdateE( aNeutron );
273 targetHasChanged = true;
274 }
275 }
276 else // random number > cnk0[iplab]
277 {
278 G4double ran = G4UniformRand();
279 if( ran < 0.25 ) // k- p --> pi- s+
280 {
281 if( targetParticle.GetDefinition() == aProton )
282 {
283 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
284 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
285 incidentHasChanged = true;
286 targetHasChanged = true;
287 }
288 }
289 else if( ran < 0.50 ) // k- p --> pi0 s0 or k- n --> pi- s0
290 {
291 if( targetParticle.GetDefinition() == aNeutron )
292 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
293 else
294 currentParticle.SetDefinitionAndUpdateE( aPiZero );
295 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
296 incidentHasChanged = true;
297 targetHasChanged = true;
298 }
299 else if( ran < 0.75 ) // k- p --> pi+ s- or k- n --> pi0 s-
300 {
301 if( targetParticle.GetDefinition() == aNeutron )
302 currentParticle.SetDefinitionAndUpdateE( aPiZero );
303 else
304 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
305 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
306 incidentHasChanged = true;
307 targetHasChanged = true;
308 }
309 else // k- p --> pi0 L or k- n --> pi- L
310 {
311 if( targetParticle.GetDefinition() == aNeutron )
312 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
313 else
314 currentParticle.SetDefinitionAndUpdateE( aPiZero );
315 targetParticle.SetDefinitionAndUpdateE( aLambda );
316 incidentHasChanged = true;
317 targetHasChanged = true;
318 }
319 }
320 }
321 else // (pOriginal > 2.0*GeV) || (random number >= cech[iplab])
322 {
323 if( availableEnergy < aPiPlus->GetPDGMass() )
324 { // not energetically possible to produce pion(s)
325 quasiElastic = true;
326 return;
327 }
328 G4double n, anpn;
329 GetNormalizationConstant( availableEnergy, n, anpn );
330 G4double ran = G4UniformRand();
331 G4double dum, test, excs = 0.0;
332 if( targetParticle.GetDefinition() == aProton )
333 {
334 G4int counter = -1;
335 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
336 {
337 for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
338 {
339 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
340 {
341 if( ++counter < numMul )
342 {
343 nt = npos+nneg+nzero;
344 if( nt > 0 )
345 {
346 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
347 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
348 if( std::fabs(dum) < 1.0 )
349 {
350 if( test >= 1.0e-10 )excs += dum*test;
351 }
352 else
353 excs += dum*test;
354 }
355 }
356 }
357 }
358 }
359 if( ran >= excs ) // 3 previous loops continued to the end
360 {
361 quasiElastic = true;
362 return;
363 }
364 npos--; nneg--; nzero--;
365 if( npos == nneg )
366 {
367 if( G4UniformRand() >= 0.75 )
368 {
369 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
370 targetParticle.SetDefinitionAndUpdateE( aNeutron );
371 incidentHasChanged = true;
372 targetHasChanged = true;
373 }
374 }
375 else if( npos == nneg+1 )
376 {
377 targetParticle.SetDefinitionAndUpdateE( aNeutron );
378 targetHasChanged = true;
379 }
380 else
381 {
382 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
383 incidentHasChanged = true;
384 }
385 }
386 else // target must be a neutron
387 {
388 G4int counter = -1;
389 for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
390 {
391 for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
392 {
393 for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
394 {
395 if( ++counter < numMul )
396 {
397 nt = npos+nneg+nzero;
398 if( (nt>=1) && (nt<=numSec) )
399 {
400 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
401 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
402 if( std::fabs(dum) < 1.0 )
403 {
404 if( test >= 1.0e-10 )excs += dum*test;
405 }
406 else
407 excs += dum*test;
408 }
409 }
410 }
411 }
412 }
413 if( ran >= excs ) // 3 previous loops continued to the end
414 {
415 quasiElastic = true;
416 return;
417 }
418 npos--; nneg--; nzero--;
419 if( npos == nneg-1 )
420 {
421 if( G4UniformRand() < 0.5 )
422 {
423 targetParticle.SetDefinitionAndUpdateE( aProton );
424 targetHasChanged = true;
425 }
426 else
427 {
428 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
429 incidentHasChanged = true;
430 }
431 }
432 else if( npos != nneg )
433 {
434 currentParticle.SetDefinitionAndUpdateE( aKaonZL );
435 incidentHasChanged = true;
436 }
437 }
438 if( G4UniformRand() >= 0.5 )
439 {
440 if( (currentParticle.GetDefinition() == aKaonMinus &&
441 targetParticle.GetDefinition() == aNeutron ) ||
442 (currentParticle.GetDefinition() == aKaonZL &&
443 targetParticle.GetDefinition() == aProton ) )
444 {
445 ran = G4UniformRand();
446 if( ran < 0.68 )
447 {
448 if( targetParticle.GetDefinition() == aProton )
449 {
450 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
451 targetParticle.SetDefinitionAndUpdateE( aLambda );
452 incidentHasChanged = true;
453 targetHasChanged = true;
454 }
455 else
456 {
457 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
458 targetParticle.SetDefinitionAndUpdateE( aLambda );
459 incidentHasChanged = true;
460 targetHasChanged = true;
461 }
462 }
463 else if( ran < 0.84 )
464 {
465 if( targetParticle.GetDefinition() == aProton )
466 {
467 currentParticle.SetDefinitionAndUpdateE( aPiZero );
468 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
469 incidentHasChanged = true;
470 targetHasChanged = true;
471 }
472 else
473 {
474 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
475 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
476 incidentHasChanged = true;
477 targetHasChanged = true;
478 }
479 }
480 else
481 {
482 if( targetParticle.GetDefinition() == aProton )
483 {
484 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
485 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
486 incidentHasChanged = true;
487 targetHasChanged = true;
488 }
489 else
490 {
491 currentParticle.SetDefinitionAndUpdateE( aPiZero );
492 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
493 incidentHasChanged = true;
494 targetHasChanged = true;
495 }
496 }
497 }
498 else // ( current != aKaonMinus || target != aNeutron ) &&
499 // ( current != aKaonZL || target != aProton )
500 {
501 ran = G4UniformRand();
502 if( ran < 0.67 )
503 {
504 currentParticle.SetDefinitionAndUpdateE( aPiZero );
505 targetParticle.SetDefinitionAndUpdateE( aLambda );
506 incidentHasChanged = true;
507 targetHasChanged = true;
508 }
509 else if( ran < 0.78 )
510 {
511 currentParticle.SetDefinitionAndUpdateE( aPiMinus );
512 targetParticle.SetDefinitionAndUpdateE( aSigmaPlus );
513 incidentHasChanged = true;
514 targetHasChanged = true;
515 }
516 else if( ran < 0.89 )
517 {
518 currentParticle.SetDefinitionAndUpdateE( aPiZero );
519 targetParticle.SetDefinitionAndUpdateE( aSigmaZero );
520 incidentHasChanged = true;
521 targetHasChanged = true;
522 }
523 else
524 {
525 currentParticle.SetDefinitionAndUpdateE( aPiPlus );
526 targetParticle.SetDefinitionAndUpdateE( aSigmaMinus );
527 incidentHasChanged = true;
528 targetHasChanged = true;
529 }
530 }
531 }
532 }
533 if( currentParticle.GetDefinition() == aKaonZL )
534 {
535 if( G4UniformRand() >= 0.5 )
536 {
537 currentParticle.SetDefinitionAndUpdateE( aKaonZS );
538 incidentHasChanged = true;
539 }
540 }
541 if( targetParticle.GetDefinition() == aKaonZL )
542 {
543 if( G4UniformRand() >= 0.5 )
544 {
545 targetParticle.SetDefinitionAndUpdateE( aKaonZS );
546 targetHasChanged = true;
547 }
548 }
549
550 SetUpPions( npos, nneg, nzero, vec, vecLen );
551 return;
552}
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
static G4KaonZeroLong * KaonZeroLong()
static G4KaonZeroShort * KaonZeroShort()
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &outFile) const
G4LEKaonMinusInelastic(const G4String &name="G4LEKaonMinusInelastic")
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
const G4double pi