Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4KleinNishinaModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4KleinNishinaModel
34//
35// Author: Vladimir Ivanchenko on base of G4KleinNishinaCompton
36//
37// Creation date: 13.06.2010
38//
39// Modifications:
40//
41// Class Description:
42//
43// -------------------------------------------------------------------
44//
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
46//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
47
50#include "G4SystemOfUnits.hh"
51#include "G4Electron.hh"
52#include "G4Gamma.hh"
53#include "Randomize.hh"
54#include "G4RandomDirection.hh"
55#include "G4DataVector.hh"
58#include "G4AtomicShells.hh"
59#include "G4LossTableManager.hh"
60
61//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
62
63using namespace std;
64
66 : G4VEmModel(nam)
67{
70 lowestGammaEnergy = 1.0*eV;
71 limitFactor = 4;
72 fProbabilities.resize(9,0.0);
75 fAtomDeexcitation = 0;
76}
77
78//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
79
81{}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84
86 const G4DataVector& cuts)
87{
88 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
91}
92
93//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
94
97 G4double GammaEnergy,
100{
101 G4double xSection = 0.0 ;
102 if ( Z < 0.9999 || GammaEnergy < 0.1*keV) { return xSection; }
103
104 static const G4double a = 20.0 , b = 230.0 , c = 440.0;
105
106 static const G4double
107 d1= 2.7965e-1*barn, d2=-1.8300e-1*barn, d3= 6.7527 *barn, d4=-1.9798e+1*barn,
108 e1= 1.9756e-5*barn, e2=-1.0205e-2*barn, e3=-7.3913e-2*barn, e4= 2.7079e-2*barn,
109 f1=-3.9178e-7*barn, f2= 6.8241e-5*barn, f3= 6.0480e-5*barn, f4= 3.0274e-4*barn;
110
111 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
112 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
113
114 G4double T0 = 15.0*keV;
115 if (Z < 1.5) { T0 = 40.0*keV; }
116
117 G4double X = max(GammaEnergy, T0) / electron_mass_c2;
118 xSection = p1Z*std::log(1.+2.*X)/X
119 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
120
121 // modification for low energy. (special case for Hydrogen)
122 if (GammaEnergy < T0) {
123 G4double dT0 = keV;
124 X = (T0+dT0) / electron_mass_c2 ;
125 G4double sigma = p1Z*log(1.+2*X)/X
126 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
127 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0);
128 G4double c2 = 0.150;
129 if (Z > 1.5) { c2 = 0.375-0.0556*log(Z); }
130 G4double y = log(GammaEnergy/T0);
131 xSection *= exp(-y*(c1+c2*y));
132 }
133
134 if(xSection < 0.0) { xSection = 0.0; }
135 // G4cout << "e= " << GammaEnergy << " Z= " << Z
136 // << " cross= " << xSection << G4endl;
137 return xSection;
138}
139
140//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
141
143 std::vector<G4DynamicParticle*>* fvect,
144 const G4MaterialCutsCouple* couple,
145 const G4DynamicParticle* aDynamicGamma,
146 G4double,
147 G4double)
148{
149 // primary gamma
150 G4double energy = aDynamicGamma->GetKineticEnergy();
151 G4ThreeVector direction = aDynamicGamma->GetMomentumDirection();
152
153 // select atom
154 const G4Element* elm = SelectRandomAtom(couple, theGamma, energy);
155
156 // select shell first
157 G4int nShells = elm->GetNbOfAtomicShells();
158 if(nShells > (G4int)fProbabilities.size()) { fProbabilities.resize(nShells); }
159 G4double totprob = 0.0;
160 G4int i;
161 for(i=0; i<nShells; ++i) {
162 //G4double bindingEnergy = elm->GetAtomicShell(i);
163 totprob += elm->GetNbOfShellElectrons(i);
164 //totprob += elm->GetNbOfShellElectrons(i)/(bindingEnergy*bindingEnergy);
165 fProbabilities[i] = totprob;
166 }
167 //if(totprob == 0.0) { return; }
168
169 // Loop on sampling
170 // const G4int nlooplim = 100;
171 //G4int nloop = 0;
172
173 G4double bindingEnergy, ePotEnergy, eKinEnergy;
174 G4double gamEnergy0, gamEnergy1;
175
176 //static const G4double eminus2 = 1.0 - exp(-2.0);
177
178 do {
179 //++nloop;
180 G4double xprob = totprob*G4UniformRand();
181
182 // select shell
183 for(i=0; i<nShells; ++i) { if(xprob <= fProbabilities[i]) { break; } }
184
185 bindingEnergy = elm->GetAtomicShell(i);
186 // ePotEnergy = bindingEnergy;
187 // gamEnergy0 = energy;
188 lv1.set(0.0,0.0,energy,energy);
189
190 //G4cout << "nShells= " << nShells << " i= " << i
191 // << " Egamma= " << energy << " Ebind= " << bindingEnergy
192 // << " Elim= " << limitEnergy
193 // << G4endl;
194
195 // for rest frame of the electron
196 G4double x = -log(G4UniformRand());
197 eKinEnergy = bindingEnergy*x;
198 ePotEnergy = bindingEnergy*(1.0 + x);
199
200 // for rest frame of the electron
201 G4double eTotMomentum = sqrt(eKinEnergy*(eKinEnergy + 2*electron_mass_c2));
202 G4double phi = G4UniformRand()*twopi;
203 G4double costet = 2*G4UniformRand() - 1;
204 G4double sintet = sqrt((1 - costet)*(1 + costet));
205 lv2.set(eTotMomentum*sintet*cos(phi),eTotMomentum*sintet*sin(phi),
206 eTotMomentum*costet,eKinEnergy + electron_mass_c2);
207 bst = lv2.boostVector();
208 lv1.boost(-bst);
209
210 gamEnergy0 = lv1.e();
211
212 // In the rest frame of the electron
213 // The scattered gamma energy is sampled according to Klein-Nishina formula
214 // The random number techniques of Butcher & Messel are used
215 // (Nuc Phys 20(1960),15).
216 G4double E0_m = gamEnergy0/electron_mass_c2;
217
218 //
219 // sample the energy rate of the scattered gamma
220 //
221
222 G4double epsilon, epsilonsq, onecost, sint2, greject ;
223
224 G4double eps0 = 1./(1 + 2*E0_m);
225 G4double epsilon0sq = eps0*eps0;
226 G4double alpha1 = - log(eps0);
227 G4double alpha2 = 0.5*(1 - epsilon0sq);
228
229 do {
230 if ( alpha1/(alpha1+alpha2) > G4UniformRand() ) {
231 epsilon = exp(-alpha1*G4UniformRand()); // epsilon0**r
232 epsilonsq = epsilon*epsilon;
233
234 } else {
235 epsilonsq = epsilon0sq + (1.- epsilon0sq)*G4UniformRand();
236 epsilon = sqrt(epsilonsq);
237 }
238
239 onecost = (1.- epsilon)/(epsilon*E0_m);
240 sint2 = onecost*(2.-onecost);
241 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
242
243 } while (greject < G4UniformRand());
244 gamEnergy1 = epsilon*gamEnergy0;
245
246 // before scattering total 4-momentum in e- system
247 lv2.set(0.0,0.0,0.0,electron_mass_c2);
248 lv2 += lv1;
249
250 //
251 // scattered gamma angles. ( Z - axis along the parent gamma)
252 //
253 if(sint2 < 0.0) { sint2 = 0.0; }
254 costet = 1. - onecost;
255 sintet = sqrt(sint2);
256 phi = twopi * G4UniformRand();
257
258 // e- recoil
259 //
260 // in rest frame of the electron
261 G4ThreeVector gamDir = lv1.vect().unit();
262 G4ThreeVector v = G4ThreeVector(sintet*cos(phi),sintet*sin(phi),costet);
263 v.rotateUz(gamDir);
264 lv1.set(gamEnergy1*v.x(),gamEnergy1*v.y(),gamEnergy1*v.z(),gamEnergy1);
265 lv2 -= lv1;
266 //G4cout<<"Egam= "<<lv1.e()<<" Ee= "<< lv2.e()-electron_mass_c2 << G4endl;
267 lv2.boost(bst);
268 eKinEnergy = lv2.e() - electron_mass_c2 - ePotEnergy;
269 //G4cout << "eKinEnergy= " << eKinEnergy << G4endl;
270
271 } while ( eKinEnergy < 0.0 );
272
273 //
274 // update G4VParticleChange for the scattered gamma
275 //
276
277 lv1.boost(bst);
278 gamEnergy1 = lv1.e();
279 if(gamEnergy1 > lowestGammaEnergy) {
280 G4ThreeVector gamDirection1 = lv1.vect().unit();
281 gamDirection1.rotateUz(direction);
283 } else {
285 gamEnergy1 = 0.0;
286 }
288
289 //
290 // kinematic of the scattered electron
291 //
292
293 if(eKinEnergy > lowestGammaEnergy) {
294 G4ThreeVector eDirection = lv2.vect().unit();
295 eDirection.rotateUz(direction);
296 G4DynamicParticle* dp =
297 new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
298 fvect->push_back(dp);
299 } else { eKinEnergy = 0.0; }
300
301 G4double edep = energy - gamEnergy1 - eKinEnergy;
302
303 // sample deexcitation
304 //
305 if(fAtomDeexcitation) {
306 G4int index = couple->GetIndex();
307 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
308 G4int Z = G4lrint(elm->GetZ());
310 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
311 size_t nbefore = fvect->size();
312 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
313 size_t nafter = fvect->size();
314 if(nafter > nbefore) {
315 for (size_t j=nbefore; j<nafter; ++j) {
316 edep -= ((*fvect)[j])->GetKineticEnergy();
317 }
318 }
319 }
320 }
321 // energy balance
322 if(edep < 0.0) { edep = 0.0; }
324}
325
326//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
327
G4AtomicShellEnumerator
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
double z() const
Hep3Vector unit() const
double x() const
double y() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
void set(double x, double y, double z, double t)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetZ() const
Definition: G4Element.hh:131
G4int GetNbOfAtomicShells() const
Definition: G4Element.hh:146
G4int GetNbOfShellElectrons(G4int index) const
Definition: G4Element.cc:383
G4double GetAtomicShell(G4int index) const
Definition: G4Element.cc:367
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
G4ParticleDefinition * theElectron
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax)
G4KleinNishinaModel(const G4String &nam="KleinNishina")
G4ParticleChangeForGamma * fParticleChange
G4ParticleDefinition * theGamma
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:641
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:123
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
int G4lrint(double ad)
Definition: templates.hh:163