Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
RotationE.cc
Go to the documentation of this file.
1// -*- C++ -*-
2// ---------------------------------------------------------------------------
3//
4// This file is a part of the CLHEP - a Class Library for High Energy Physics.
5//
6// This is the implementation of methods of the HepRotation class which
7// were introduced when ZOOM PhysicsVectors was merged in, and which involve
8// Euler Angles representation.
9//
10// Apr 28, 2003 mf Modified way of computing Euler angles to avoid flawed
11// answers in the case where theta is near 0 of pi, and
12// the matrix is not a perfect rotation (due to roundoff).
13
14#ifdef GNUPRAGMA
15#pragma implementation
16#endif
17
21
22#include <cmath>
23
24namespace CLHEP {
25
26static inline double safe_acos (double x) {
27 if (std::abs(x) <= 1.0) return std::acos(x);
28 return ( (x>0) ? 0 : CLHEP::pi );
29}
30
31// ---------- Constructors and Assignment:
32
33// Euler angles
34
35HepRotation & HepRotation::set(double phi1, double theta1, double psi1) {
36
37 register double sinPhi = std::sin( phi1 ), cosPhi = std::cos( phi1 );
38 register double sinTheta = std::sin( theta1 ), cosTheta = std::cos( theta1 );
39 register double sinPsi = std::sin( psi1 ), cosPsi = std::cos( psi1 );
40
41 rxx = cosPsi * cosPhi - cosTheta * sinPhi * sinPsi;
42 rxy = cosPsi * sinPhi + cosTheta * cosPhi * sinPsi;
43 rxz = sinPsi * sinTheta;
44
45 ryx = - sinPsi * cosPhi - cosTheta * sinPhi * cosPsi;
46 ryy = - sinPsi * sinPhi + cosTheta * cosPhi * cosPsi;
47 ryz = cosPsi * sinTheta;
48
49 rzx = sinTheta * sinPhi;
50 rzy = - sinTheta * cosPhi;
51 rzz = cosTheta;
52
53 return *this;
54
55} // Rotation::set(phi, theta, psi)
56
57HepRotation::HepRotation( double phi1, double theta1, double psi1 )
58{
59 set (phi1, theta1, psi1);
60}
62 return set(e.phi(), e.theta(), e.psi());
63}
65{
66 set(e.phi(), e.theta(), e.psi());
67}
68
69
70double HepRotation::phi () const {
71
72 double s2 = 1.0 - rzz*rzz;
73 if (s2 < 0) {
74 std::cerr << "HepRotation::phi() - "
75 << "HepRotation::phi() finds | rzz | > 1 " << std::endl;
76 s2 = 0;
77 }
78 const double sinTheta = std::sqrt( s2 );
79
80 if (sinTheta < .01) { // For theta close to 0 or PI, use the more stable
81 // algorithm to get all three Euler angles
83 return ea.phi();
84 }
85
86 const double cscTheta = 1/sinTheta;
87 double cosabsphi = - rzy * cscTheta;
88 if ( std::fabs(cosabsphi) > 1 ) { // NaN-proofing
89 std::cerr << "HepRotation::phi() - "
90 << "HepRotation::phi() finds | cos phi | > 1 " << std::endl;
91 cosabsphi = 1;
92 }
93 const double absPhi = std::acos ( cosabsphi );
94 if (rzx > 0) {
95 return absPhi;
96 } else if (rzx < 0) {
97 return -absPhi;
98 } else {
99 return (rzy < 0) ? 0 : CLHEP::pi;
100 }
101
102} // phi()
103
104double HepRotation::theta() const {
105
106 return safe_acos( rzz );
107
108} // theta()
109
110double HepRotation::psi () const {
111
112 double sinTheta;
113 if ( std::fabs(rzz) > 1 ) { // NaN-proofing
114 std::cerr << "HepRotation::psi() - "
115 << "HepRotation::psi() finds | rzz | > 1" << std::endl;
116 sinTheta = 0;
117 } else {
118 sinTheta = std::sqrt( 1.0 - rzz*rzz );
119 }
120
121 if (sinTheta < .01) { // For theta close to 0 or PI, use the more stable
122 // algorithm to get all three Euler angles
124 return ea.psi();
125 }
126
127 const double cscTheta = 1/sinTheta;
128 double cosabspsi = ryz * cscTheta;
129 if ( std::fabs(cosabspsi) > 1 ) { // NaN-proofing
130 std::cerr << "HepRotation::psi() - "
131 << "HepRotation::psi() finds | cos psi | > 1" << std::endl;
132 cosabspsi = 1;
133 }
134 const double absPsi = std::acos ( cosabspsi );
135 if (rxz > 0) {
136 return absPsi;
137 } else if (rxz < 0) {
138 return -absPsi;
139 } else {
140 return (ryz > 0) ? 0 : CLHEP::pi;
141 }
142
143} // psi()
144
145// Helpers for eulerAngles():
146
147static
148void correctByPi ( double& psi1, double& phi1 ) {
149 if (psi1 > 0) {
150 psi1 -= CLHEP::pi;
151 } else {
152 psi1 += CLHEP::pi;
153 }
154 if (phi1 > 0) {
155 phi1 -= CLHEP::pi;
156 } else {
157 phi1 += CLHEP::pi;
158 }
159}
160
161static
162void correctPsiPhi ( double rxz, double rzx, double ryz, double rzy,
163 double& psi1, double& phi1 ) {
164
165 // set up quatities which would be positive if sin and cosine of
166 // psi1 and phi1 were positive:
167 double w[4];
168 w[0] = rxz; w[1] = rzx; w[2] = ryz; w[3] = -rzy;
169
170 // find biggest relevant term, which is the best one to use in correcting.
171 double maxw = std::abs(w[0]);
172 int imax = 0;
173 for (int i = 1; i < 4; ++i) {
174 if (std::abs(w[i]) > maxw) {
175 maxw = std::abs(w[i]);
176 imax = i;
177 }
178 }
179 // Determine if the correction needs to be applied: The criteria are
180 // different depending on whether a sine or cosine was the determinor:
181 switch (imax) {
182 case 0:
183 if (w[0] > 0 && psi1 < 0) correctByPi ( psi1, phi1 );
184 if (w[0] < 0 && psi1 > 0) correctByPi ( psi1, phi1 );
185 break;
186 case 1:
187 if (w[1] > 0 && phi1 < 0) correctByPi ( psi1, phi1 );
188 if (w[1] < 0 && phi1 > 0) correctByPi ( psi1, phi1 );
189 break;
190 case 2:
191 if (w[2] > 0 && std::abs(psi1) > CLHEP::halfpi) correctByPi ( psi1, phi1 );
192 if (w[2] < 0 && std::abs(psi1) < CLHEP::halfpi) correctByPi ( psi1, phi1 );
193 break;
194 case 3:
195 if (w[3] > 0 && std::abs(phi1) > CLHEP::halfpi) correctByPi ( psi1, phi1 );
196 if (w[3] < 0 && std::abs(phi1) < CLHEP::halfpi) correctByPi ( psi1, phi1 );
197 break;
198 }
199}
200
202
203 // Please see the mathematical justification in eulerAngleComputations.ps
204
205 double phi1, theta1, psi1;
206 double psiPlusPhi, psiMinusPhi;
207
208 theta1 = safe_acos( rzz );
209
210// if (rzz > 1 || rzz < -1) {
211// std::cerr << "HepRotation::eulerAngles() - "
212// << "HepRotation::eulerAngles() finds | rzz | > 1 " << std::endl;
213// }
214
215 double cosTheta = rzz;
216 if (cosTheta > 1) cosTheta = 1;
217 if (cosTheta < -1) cosTheta = -1;
218
219 if (cosTheta == 1) {
220 psiPlusPhi = std::atan2 ( rxy - ryx, rxx + ryy );
221 psiMinusPhi = 0;
222
223 } else if (cosTheta >= 0) {
224
225 // In this realm, the atan2 expression for psi + phi is numerically stable
226 psiPlusPhi = std::atan2 ( rxy - ryx, rxx + ryy );
227
228 // psi - phi is potentially more subtle, but when unstable it is moot
229 double s1 = -rxy - ryx; // sin (psi-phi) * (1 - cos theta)
230 double c1 = rxx - ryy; // cos (psi-phi) * (1 - cos theta)
231 psiMinusPhi = std::atan2 ( s1, c1 );
232
233 } else if (cosTheta > -1) {
234
235 // In this realm, the atan2 expression for psi - phi is numerically stable
236 psiMinusPhi = std::atan2 ( -rxy - ryx, rxx - ryy );
237
238 // psi + phi is potentially more subtle, but when unstable it is moot
239 double s1 = rxy - ryx; // sin (psi+phi) * (1 + cos theta)
240 double c1 = rxx + ryy; // cos (psi+phi) * (1 + cos theta)
241 psiPlusPhi = std::atan2 ( s1, c1 );
242
243 } else { // cosTheta == -1
244
245 psiMinusPhi = std::atan2 ( -rxy - ryx, rxx - ryy );
246 psiPlusPhi = 0;
247
248 }
249
250 psi1 = .5 * (psiPlusPhi + psiMinusPhi);
251 phi1 = .5 * (psiPlusPhi - psiMinusPhi);
252
253 // Now correct by pi if we have managed to get a value of psiPlusPhi
254 // or psiMinusPhi that was off by 2 pi:
255 correctPsiPhi ( rxz, rzx, ryz, rzy, psi1, phi1 );
256
257 return HepEulerAngles( phi1, theta1, psi1 );
258
259} // eulerAngles()
260
261
262void HepRotation::setPhi (double phi1) {
263 set ( phi1, theta(), psi() );
264}
265
266void HepRotation::setTheta (double theta1) {
267 set ( phi(), theta1, psi() );
268}
269
270void HepRotation::setPsi (double psi1) {
271 set ( phi(), theta(), psi1 );
272}
273
274} // namespace CLHEP
275
double phi() const
double theta() const
double psi() const
HepEulerAngles eulerAngles() const
Definition: RotationE.cc:201
void setPsi(double psi)
Definition: RotationE.cc:270
double phi() const
Definition: RotationE.cc:70
HepRotation & set(const Hep3Vector &axis, double delta)
Definition: RotationA.cc:27
double psi() const
Definition: RotationE.cc:110
double theta() const
Definition: RotationE.cc:104
void setPhi(double phi)
Definition: RotationE.cc:262
void setTheta(double theta)
Definition: RotationE.cc:266
Definition: DoubConv.h:17