Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4mplIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class header file
31//
32//
33// File name: G4mplIonisationModel
34//
35// Author: Vladimir Ivanchenko
36//
37// Creation date: 06.09.2005
38//
39// Modifications:
40// 12.08.2007 Changing low energy approximation and extrapolation.
41// Small bug fixing and refactoring (M. Vladymyrov)
42// 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko)
43//
44//
45// -------------------------------------------------------------------
46// References
47// [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles,
48// S.P. Ahlen, Rev. Mod. Phys 52(1980), p121
49// [2] K.A. Milton arXiv:hep-ex/0602040
50// [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347
51
52
53//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
54//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
55
57#include "Randomize.hh"
59#include "G4SystemOfUnits.hh"
60#include "G4LossTableManager.hh"
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64
65using namespace std;
66
69 magCharge(mCharge),
70 twoln10(log(100.0)),
71 betalow(0.01),
72 betalim(0.1),
73 beta2lim(betalim*betalim),
74 bg2lim(beta2lim*(1.0 + beta2lim))
75{
76 nmpl = G4int(abs(magCharge) * 2 * fine_structure_const + 0.5);
77 if(nmpl > 6) { nmpl = 6; }
78 else if(nmpl < 1) { nmpl = 1; }
79 pi_hbarc2_over_mc2 = pi * hbarc * hbarc / electron_mass_c2;
80 chargeSquare = magCharge * magCharge;
81 dedxlim = 45.*nmpl*nmpl*GeV*cm2/g;
82 fParticleChange = 0;
83 monopole = 0;
84 mass = 0.0;
85}
86
87//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
88
90{}
91
92//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
93
95{
96 monopole = p;
97 mass = monopole->GetPDGMass();
98 G4double emin =
99 std::min(LowEnergyLimit(),0.1*mass*(1/sqrt(1 - betalow*betalow) - 1));
100 G4double emax =
101 std::max(HighEnergyLimit(),10*mass*(1/sqrt(1 - beta2lim) - 1));
102 SetLowEnergyLimit(emin);
103 SetHighEnergyLimit(emax);
104}
105
106//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107
109 const G4DataVector&)
110{
111 if(!monopole) { SetParticle(p); }
112 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); }
113}
114
115//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
116
118 const G4ParticleDefinition* p,
119 G4double kineticEnergy,
120 G4double)
121{
122 if(!monopole) { SetParticle(p); }
123 G4double tau = kineticEnergy / mass;
124 G4double gam = tau + 1.0;
125 G4double bg2 = tau * (tau + 2.0);
126 G4double beta2 = bg2 / (gam * gam);
127 G4double beta = sqrt(beta2);
128
129 // low-energy asymptotic formula
130 G4double dedx = dedxlim*beta*material->GetDensity();
131
132 // above asymptotic
133 if(beta > betalow) {
134
135 // high energy
136 if(beta >= betalim) {
137 dedx = ComputeDEDXAhlen(material, bg2);
138
139 } else {
140
141 G4double dedx1 = dedxlim*betalow*material->GetDensity();
142 G4double dedx2 = ComputeDEDXAhlen(material, bg2lim);
143
144 // extrapolation between two formula
145 G4double kapa2 = beta - betalow;
146 G4double kapa1 = betalim - beta;
147 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2);
148 }
149 }
150 return dedx;
151}
152
153//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
154
155G4double G4mplIonisationModel::ComputeDEDXAhlen(const G4Material* material,
156 G4double bg2)
157{
158 G4double eDensity = material->GetElectronDensity();
159 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
160 G4double cden = material->GetIonisation()->GetCdensity();
161 G4double mden = material->GetIonisation()->GetMdensity();
162 G4double aden = material->GetIonisation()->GetAdensity();
163 G4double x0den = material->GetIonisation()->GetX0density();
164 G4double x1den = material->GetIonisation()->GetX1density();
165
166 // Ahlen's formula for nonconductors, [1]p157, f(5.7)
167 G4double dedx = log(2.0 * electron_mass_c2 * bg2 / eexc) - 0.5;
168
169 // Kazama et al. cross-section correction
170 G4double k = 0.406;
171 if(nmpl > 1) k = 0.346;
172
173 // Bloch correction
174 const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685};
175
176 dedx += 0.5 * k - B[nmpl];
177
178 // density effect correction
179 G4double deltam;
180 G4double x = log(bg2) / twoln10;
181 if ( x >= x0den ) {
182 deltam = twoln10 * x - cden;
183 if ( x < x1den ) deltam += aden * pow((x1den-x), mden);
184 dedx -= 0.5 * deltam;
185 }
186
187 // now compute the total ionization loss
188 dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl;
189
190 if (dedx < 0.0) dedx = 0;
191 return dedx;
192}
193
194//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
195
196void G4mplIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>*,
198 const G4DynamicParticle*,
199 G4double,
200 G4double)
201{}
202
203//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
204
206 const G4Material* material,
207 const G4DynamicParticle* dp,
208 G4double& tmax,
209 G4double& length,
210 G4double& meanLoss)
211{
212 G4double siga = Dispersion(material,dp,tmax,length);
213 G4double loss = meanLoss;
214 siga = sqrt(siga);
215 G4double twomeanLoss = meanLoss + meanLoss;
216
217 if(twomeanLoss < siga) {
218 G4double x;
219 do {
220 loss = twomeanLoss*G4UniformRand();
221 x = (loss - meanLoss)/siga;
222 } while (1.0 - 0.5*x*x < G4UniformRand());
223 } else {
224 do {
225 loss = G4RandGauss::shoot(meanLoss,siga);
226 } while (0.0 > loss || loss > twomeanLoss);
227 }
228 return loss;
229}
230
231//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
232
234 const G4DynamicParticle* dp,
235 G4double& tmax,
236 G4double& length)
237{
238 G4double siga = 0.0;
239 G4double tau = dp->GetKineticEnergy()/mass;
240 if(tau > 0.0) {
241 G4double electronDensity = material->GetElectronDensity();
242 G4double gam = tau + 1.0;
243 G4double invbeta2 = (gam*gam)/(tau * (tau+2.0));
244 siga = (invbeta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
245 * electronDensity * chargeSquare;
246 }
247 return siga;
248}
249
250//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
G4double GetKineticEnergy() const
G4double GetMdensity() const
G4double GetX1density() const
G4double GetX0density() const
G4double GetCdensity() const
G4double GetMeanExcitationEnergy() const
G4double GetAdensity() const
G4double GetDensity() const
Definition: G4Material.hh:179
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:225
G4double GetElectronDensity() const
Definition: G4Material.hh:216
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:592
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:95
G4mplIonisationModel(G4double mCharge, const G4String &nam="mplIonisation")
virtual G4double SampleFluctuations(const G4Material *, const G4DynamicParticle *, G4double &tmax, G4double &length, G4double &meanLoss)
virtual G4double Dispersion(const G4Material *, const G4DynamicParticle *, G4double &tmax, G4double &length)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
void SetParticle(const G4ParticleDefinition *p)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)