Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4HEXiZeroInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27
28// G4 Process: Gheisha High Energy Collision model.
29// This includes the high energy cascading model, the two-body-resonance model
30// and the low energy two-body model. Not included are the low energy stuff
31// like nuclear reactions, nuclear fission without any cascading and all
32// processes for particles at rest.
33// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
34// H. Fesefeldt, RWTH-Aachen, 23-October-1996
35
37#include "globals.hh"
38#include "G4ios.hh"
40
41void G4HEXiZeroInelastic::ModelDescription(std::ostream& outFile) const
42{
43 outFile << "G4HEXiZeroInelastic is one of the High Energy\n"
44 << "Parameterized (HEP) models used to implement inelastic\n"
45 << "Xi0 scattering from nuclei. It is a re-engineered\n"
46 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
47 << "initial collision products into backward- and forward-going\n"
48 << "clusters which are then decayed into final state hadrons.\n"
49 << "The model does not conserve energy on an event-by-event\n"
50 << "basis. It may be applied to Xi0 with initial energies\n"
51 << "above 20 GeV.\n";
52}
53
54
57 G4Nucleus& targetNucleus)
58{
59 G4HEVector* pv = new G4HEVector[MAXPART];
60 const G4HadProjectile* aParticle = &aTrack;
61 const G4double A = targetNucleus.GetA_asInt();
62 const G4double Z = targetNucleus.GetZ_asInt();
63 G4HEVector incidentParticle(aParticle);
64
65 G4double atomicNumber = Z;
66 G4double atomicWeight = A;
67
68 G4int incidentCode = incidentParticle.getCode();
69 G4double incidentMass = incidentParticle.getMass();
70 G4double incidentTotalEnergy = incidentParticle.getEnergy();
71
72 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
73 // DHW 19 May 2011: variable set but not used
74
75 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
76
77 if (incidentKineticEnergy < 1.)
78 G4cout << "GHEXiZeroInelastic: incident energy < 1 GeV" << G4endl;
79
80 if (verboseLevel > 1) {
81 G4cout << "G4HEXiZeroInelastic::ApplyYourself" << G4endl;
82 G4cout << "incident particle " << incidentParticle.getName()
83 << "mass " << incidentMass
84 << "kinetic energy " << incidentKineticEnergy
85 << G4endl;
86 G4cout << "target material with (A,Z) = ("
87 << atomicWeight << "," << atomicNumber << ")" << G4endl;
88 }
89
90 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
91 atomicWeight, atomicNumber);
92 if (verboseLevel > 1)
93 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
94
95 incidentKineticEnergy -= inelasticity;
96
97 G4double excitationEnergyGNP = 0.;
98 G4double excitationEnergyDTA = 0.;
99
100 G4double excitation = NuclearExcitation(incidentKineticEnergy,
101 atomicWeight, atomicNumber,
102 excitationEnergyGNP,
103 excitationEnergyDTA);
104 if (verboseLevel > 1)
105 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
106 << excitationEnergyDTA << G4endl;
107
108 incidentKineticEnergy -= excitation;
109 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
110 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
111 // *(incidentTotalEnergy+incidentMass));
112 // DHW 19 May 2011: variables set but not used
113
114 G4HEVector targetParticle;
115 if (G4UniformRand() < atomicNumber/atomicWeight) {
116 targetParticle.setDefinition("Proton");
117 } else {
118 targetParticle.setDefinition("Neutron");
119 }
120
121 G4double targetMass = targetParticle.getMass();
122 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
123 + targetMass*targetMass
124 + 2.0*targetMass*incidentTotalEnergy);
125 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
126
127 G4bool inElastic = true;
128 vecLength = 0;
129
130 if (verboseLevel > 1)
131 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
132 << incidentCode << G4endl;
133
134 G4bool successful = false;
135
136 FirstIntInCasXiZero(inElastic, availableEnergy, pv, vecLength,
137 incidentParticle, targetParticle, atomicWeight);
138
139 if (verboseLevel > 1)
140 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
141
142 if ((vecLength > 0) && (availableEnergy > 1.))
143 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
144 pv, vecLength,
145 incidentParticle, targetParticle);
146
147 HighEnergyCascading(successful, pv, vecLength,
148 excitationEnergyGNP, excitationEnergyDTA,
149 incidentParticle, targetParticle,
150 atomicWeight, atomicNumber);
151 if (!successful)
153 excitationEnergyGNP, excitationEnergyDTA,
154 incidentParticle, targetParticle,
155 atomicWeight, atomicNumber);
156 if (!successful)
157 MediumEnergyCascading(successful, pv, vecLength,
158 excitationEnergyGNP, excitationEnergyDTA,
159 incidentParticle, targetParticle,
160 atomicWeight, atomicNumber);
161
162 if (!successful)
164 excitationEnergyGNP, excitationEnergyDTA,
165 incidentParticle, targetParticle,
166 atomicWeight, atomicNumber);
167 if (!successful)
168 QuasiElasticScattering(successful, pv, vecLength,
169 excitationEnergyGNP, excitationEnergyDTA,
170 incidentParticle, targetParticle,
171 atomicWeight, atomicNumber);
172 if (!successful)
173 ElasticScattering(successful, pv, vecLength,
174 incidentParticle,
175 atomicWeight, atomicNumber);
176
177 if (!successful)
178 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
179 << G4endl;
180
182 delete [] pv;
184 return &theParticleChange;
185}
186
187
188void
190 const G4double availableEnergy,
191 G4HEVector pv[],
192 G4int& vecLen,
193 const G4HEVector& incidentParticle,
194 const G4HEVector& targetParticle,
195 const G4double atomicWeight)
196
197// Xi0 undergoes interaction with nucleon within a nucleus. Check if it is
198// energetically possible to produce pions/kaons. In not, assume nuclear excitation
199// occurs and input particle is degraded in energy. No other particles are produced.
200// If reaction is possible, find the correct number of pions/protons/neutrons
201// produced using an interpolation to multiplicity data. Replace some pions or
202// protons/neutrons by kaons or strange baryons according to the average
203// multiplicity per inelastic reaction.
204{
205 static const G4double expxu = 82.; // upper bound for arg. of exp
206 static const G4double expxl = -expxu; // lower bound for arg. of exp
207
208 static const G4double protb = 0.7;
209 static const G4double neutb = 0.7;
210 static const G4double c = 1.25;
211
212 static const G4int numMul = 1200;
213 static const G4int numSec = 60;
214
215 G4int protonCode = Proton.getCode();
216 G4int targetCode = targetParticle.getCode();
217 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
218
219 static G4bool first = true;
220 static G4double protmul[numMul], protnorm[numSec]; // proton constants
221 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
222
223 // misc. local variables
224 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
225
226 G4int i, counter, nt, npos, nneg, nzero;
227
228 if (first) {
229 // compute normalization constants, this will only be done once
230 first = false;
231 for (i = 0; i < numMul; i++) protmul[i] = 0.0;
232 for (i = 0; i < numSec; i++) protnorm[i] = 0.0;
233 counter = -1;
234 for (npos = 0; npos < (numSec/3); npos++) {
235 for (nneg = std::max(0,npos-2); nneg <= npos; nneg++) {
236 for (nzero = 0; nzero < numSec/3; nzero++) {
237 if (++counter < numMul) {
238 nt = npos+nneg+nzero;
239 if ((nt>0) && (nt<=numSec) ) {
240 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
241 protnorm[nt-1] += protmul[counter];
242 }
243 }
244 }
245 }
246 }
247
248 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
249 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
250 counter = -1;
251 for( npos=0; npos<numSec/3; npos++ )
252 {
253 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
254 {
255 for( nzero=0; nzero<numSec/3; nzero++ )
256 {
257 if( ++counter < numMul )
258 {
259 nt = npos+nneg+nzero;
260 if( (nt>0) && (nt<=numSec) )
261 {
262 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
263 neutnorm[nt-1] += neutmul[counter];
264 }
265 }
266 }
267 }
268 }
269 for (i = 0; i < numSec; i++) {
270 if (protnorm[i] > 0.0) protnorm[i] = 1.0/protnorm[i];
271 if (neutnorm[i] > 0.0) neutnorm[i] = 1.0/neutnorm[i];
272 }
273 } // end of initialization
274
275 // initialize the first two places the same as beam and target
276 pv[0] = incidentParticle;
277 pv[1] = targetParticle;
278 vecLen = 2;
279
280 if( !inElastic )
281 { // quasi-elastic scattering, no pions produced
282 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
283 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
284 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
285 {
286 G4double ran = G4UniformRand();
287 if( targetCode == protonCode)
288 {
289 if (ran < 0.2)
290 {
291 pv[0] = SigmaPlus;
292 pv[1] = SigmaZero;
293 }
294 else if (ran < 0.4)
295 {
296 pv[0] = SigmaZero;
297 pv[1] = SigmaPlus;
298 }
299 else if (ran < 0.6)
300 {
301 pv[0] = SigmaPlus;
302 pv[1] = Lambda;
303 }
304 else if (ran < 0.8)
305 {
306 pv[0] = Lambda;
307 pv[1] = SigmaPlus;
308 }
309 else
310 {
311 pv[0] = Proton;
312 pv[1] = XiZero;
313 }
314 }
315 else
316 {
317 if (ran < 0.2)
318 {
319 pv[0] = Neutron;
320 pv[1] = XiZero;
321 }
322 else if (ran < 0.3)
323 {
324 pv[0] = SigmaZero;
325 pv[1] = SigmaZero;
326 }
327 else if (ran < 0.4)
328 {
329 pv[0] = Lambda;
330 pv[1] = Lambda;
331 }
332 else if (ran < 0.5)
333 {
334 pv[0] = SigmaZero;
335 pv[1] = Lambda;
336 }
337 else if (ran < 0.6)
338 {
339 pv[0] = Lambda;
340 pv[1] = SigmaZero;
341 }
342 else if (ran < 0.7)
343 {
344 pv[0] = SigmaPlus;
345 pv[1] = SigmaMinus;
346 }
347 else if (ran < 0.8)
348 {
349 pv[0] = SigmaMinus;
350 pv[1] = SigmaPlus;
351 }
352 else if (ran < 0.9)
353 {
354 pv[0] = XiMinus;
355 pv[1] = Proton;
356 }
357 else
358 {
359 pv[0] = Proton;
360 pv[1] = XiMinus;
361 }
362 }
363 }
364 return;
365 }
366 else if (availableEnergy <= PionPlus.getMass())
367 return;
368
369 // inelastic scattering
370
371 npos = 0; nneg = 0; nzero = 0;
372
373 // number of total particles vs. centre of mass Energy - 2*proton mass
374
375 G4double aleab = std::log(availableEnergy);
376 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
377 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
378
379 // normalization constant for kno-distribution.
380 // calculate first the sum of all constants, check for numerical problems.
381 G4double test, dum, anpn = 0.0;
382
383 for (nt=1; nt<=numSec; nt++) {
384 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
385 dum = pi*nt/(2.0*n*n);
386 if (std::fabs(dum) < 1.0) {
387 if (test >= 1.0e-10) anpn += dum*test;
388 } else {
389 anpn += dum*test;
390 }
391 }
392
393 G4double ran = G4UniformRand();
394 G4double excs = 0.0;
395 if( targetCode == protonCode )
396 {
397 counter = -1;
398 for (npos=0; npos<numSec/3; npos++) {
399 for (nneg=std::max(0,npos-2); nneg<=npos; nneg++) {
400 for (nzero=0; nzero<numSec/3; nzero++) {
401 if (++counter < numMul) {
402 nt = npos+nneg+nzero;
403 if ( (nt>0) && (nt<=numSec) ) {
404 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
405 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
406 if (std::fabs(dum) < 1.0) {
407 if (test >= 1.0e-10) excs += dum*test;
408 } else {
409 excs += dum*test;
410 }
411 if (ran < excs) goto outOfLoop; //----------------------->
412 }
413 }
414 }
415 }
416 }
417
418 // 3 previous loops continued to the end
419
420 inElastic = false; // quasi-elastic scattering
421 return;
422 }
423 else
424 { // target must be a neutron
425 counter = -1;
426 for (npos=0; npos<numSec/3; npos++) {
427 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
428 for (nzero=0; nzero<numSec/3; nzero++) {
429 if (++counter < numMul) {
430 nt = npos+nneg+nzero;
431 if ( (nt>=1) && (nt<=numSec) ) {
432 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
433 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
434 if (std::fabs(dum) < 1.0) {
435 if (test >= 1.0e-10) excs += dum*test;
436 } else {
437 excs += dum*test;
438 }
439 if (ran < excs) goto outOfLoop; // ------------------->
440 }
441 }
442 }
443 }
444 }
445 // 3 previous loops continued to the end
446
447 inElastic = false; // quasi-elastic scattering.
448 return;
449 }
450
451 outOfLoop: // <----------------------------------------------------
452
453 // in the following we do not consider
454 // strangeness transfer in high multiplicity
455 // events. YK combinations are added in
456 // StrangeParticlePairProduction
457 ran = G4UniformRand();
458 if (targetCode == protonCode) {
459 if( npos == nneg)
460 {
461 }
462 else if (npos == (nneg+1))
463 {
464 if( ran < 0.50)
465 {
466 pv[0] = XiMinus;
467 }
468 else
469 {
470 pv[1] = Neutron;
471 }
472 }
473 else
474 {
475 pv[0] = XiMinus;
476 pv[1] = Neutron;
477 }
478 } else {
479 if (npos == nneg)
480 {
481 if (ran < 0.5)
482 {
483 }
484 else
485 {
486 pv[0] = XiMinus;
487 pv[1] = Proton;
488 }
489 }
490 else if (npos == (nneg-1))
491 {
492 pv[1] = Proton;
493 }
494 else
495 {
496 pv[0] = XiMinus;
497 }
498 }
499
500 nt = npos + nneg + nzero;
501 while (nt > 0) {
502 G4double rnd = G4UniformRand();
503 if (rnd < (G4double)npos/nt) {
504 if (npos > 0) {
505 pv[vecLen++] = PionPlus;
506 npos--;
507 }
508 } else if (rnd < (G4double)(npos+nneg)/nt) {
509 if (nneg > 0) {
510 pv[vecLen++] = PionMinus;
511 nneg--;
512 }
513 } else {
514 if (nzero > 0) {
515 pv[vecLen++] = PionZero;
516 nzero--;
517 }
518 }
519 nt = npos + nneg + nzero;
520 }
521
522 if (verboseLevel > 1) {
523 G4cout << "Particles produced: " ;
524 G4cout << pv[0].getCode() << " " ;
525 G4cout << pv[1].getCode() << " " ;
526 for ( i = 2; i < vecLen; i++) G4cout << pv[i].getCode() << " " ;
527 G4cout << G4endl;
528 }
529
530 return;
531}
532
@ stopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector SigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector Lambda
G4HEVector SigmaPlus
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector XiZero
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector SigmaMinus
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector XiMinus
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &) const
void FirstIntInCasXiZero(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115