Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AlphaEvaporationProbability.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J.M. Quesada (August2008). Based on:
29//
30// Hadronic Process: Nuclear De-excitations
31// by V. Lara (Oct 1998)
32//
33// Modified:
34// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35// 17-11-2010 V.Ivanchenko integer Z and A
36
38#include "G4SystemOfUnits.hh"
39
41 G4EvaporationProbability(4,2,1,&theCoulombBarrier) // A,Z,Gamma,&theCoumlombBarrier
42{
43 ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
44 ResidualAthrd = FragmentAthrd = 0.0;
45}
46
48{}
49
50G4double G4AlphaEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
51 { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
52
53G4double G4AlphaEvaporationProbability::CalcBetaParam(const G4Fragment &)
54 { return 0.0; }
55
56G4double G4AlphaEvaporationProbability::CCoeficient(G4int aZ)
57{
58 // Data comes from
59 // Dostrovsky, Fraenkel and Friedlander
60 // Physical Review, vol 116, num. 3 1959
61 //
62 // const G4int size = 5;
63 // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
64 // G4double Calpha[5] = { 0.10, 0.10, 0.10, 0.08, 0.06};
65 G4double C = 0.0;
66
67 if (aZ <= 30)
68 {
69 C = 0.10;
70 }
71 else if (aZ <= 50)
72 {
73 C = 0.1 - (aZ-30)*0.001;
74 }
75 else if (aZ < 70)
76 {
77 C = 0.08 - (aZ-50)*0.001;
78 }
79 else
80 {
81 C = 0.06;
82 }
83 return C;
84}
85
86///////////////////////////////////////////////////////////////////////////////////
87//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
88//OPT=0 Dostrovski's parameterization
89//OPT=1,2 Chatterjee's paramaterization
90//OPT=3,4 Kalbach's parameterization
91//
93G4AlphaEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
94{
95 theA=GetA();
96 theZ=GetZ();
97 ResidualA=fragment.GetA_asInt()-theA;
98 ResidualZ=fragment.GetZ_asInt()-theZ;
99
100 ResidualAthrd=fG4pow->Z13(ResidualA);
101 FragmentA=fragment.GetA_asInt();
102 FragmentAthrd=fG4pow->Z13(FragmentA);
103
104 if (OPTxs==0) {std::ostringstream errOs;
105 errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (Alpha's)!!"
106 <<G4endl;
107 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
108 return 0.;}
109
110 if( OPTxs==1 || OPTxs==2) return G4AlphaEvaporationProbability::GetOpt12( K);
111 else if (OPTxs==3 || OPTxs==4) return G4AlphaEvaporationProbability::GetOpt34( K);
112 else{
113 std::ostringstream errOs;
114 errOs << "BAD Alpha CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
115 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
116 return 0.;
117 }
118}
119
120//
121//********************* OPT=1,2 : Chatterjee's cross section ********************
122//(fitting to cross section from Bechetti & Greenles OM potential)
123
124G4double G4AlphaEvaporationProbability::GetOpt12(G4double K)
125{
126 G4double Kc=K;
127
128 // JMQ xsec is set constant above limit of validity
129 if (K > 50*MeV) { Kc = 50*MeV; }
130
131 G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
132
133 G4double p0 = 10.95;
134 G4double p1 = -85.2;
135 G4double p2 = 1146.;
136 G4double landa0 = 0.0643;
137 G4double landa1 = -13.96;
138 G4double mum0 = 781.2;
139 G4double mu1 = 0.29;
140 G4double nu0 = -304.7;
141 G4double nu1 = -470.0;
142 G4double nu2 = -8.580;
143 G4double delta=1.2;
144
145 Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
146 p = p0 + p1/Ec + p2/(Ec*Ec);
147 landa = landa0*ResidualA + landa1;
148 G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
149 mu = mum0*resmu1;
150 nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
151 q = landa - nu/(Ec*Ec) - 2*p*Ec;
152 r = mu + 2*nu/Ec + p*(Ec*Ec);
153
154 ji=std::max(Kc,Ec);
155 if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
156 else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
157
158 if (xs <0.0) {xs=0.0;}
159
160 return xs;
161}
162
163// *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
164G4double G4AlphaEvaporationProbability::GetOpt34(G4double K)
165// c ** alpha from huizenga and igo
166{
167 G4double landa, mu, nu, p , signor(1.),sig;
168 G4double ec,ecsq,xnulam,etest(0.),a;
169 G4double b,ecut,cut,ecut2,geom,elab;
170
171 G4double flow = 1.e-18;
172 G4double spill= 1.e+18;
173
174 G4double p0 = 10.95;
175 G4double p1 = -85.2;
176 G4double p2 = 1146.;
177 G4double landa0 = 0.0643;
178 G4double landa1 = -13.96;
179 G4double mum0 = 781.2;
180 G4double mu1 = 0.29;
181 G4double nu0 = -304.7;
182 G4double nu1 = -470.0;
183 G4double nu2 = -8.580;
184
185 G4double ra=1.20;
186
187 //JMQ 13/02/09 increase of reduced radius to lower the barrier
188 // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
189 ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
190 ecsq = ec * ec;
191 p = p0 + p1/ec + p2/ecsq;
192 landa = landa0*ResidualA + landa1;
193 a = fG4pow->powZ(ResidualA,mu1);
194 mu = mum0 * a;
195 nu = a* (nu0+nu1*ec+nu2*ecsq);
196 xnulam = nu / landa;
197 if (xnulam > spill) { xnulam=0.; }
198 if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
199
200 a = -2.*p*ec + landa - nu/ecsq;
201 b = p*ecsq + mu + 2.*nu/ec;
202 ecut = 0.;
203 cut = a*a - 4.*p*b;
204 if (cut > 0.) { ecut = std::sqrt(cut); }
205 ecut = (ecut-a) / (p+p);
206 ecut2 = ecut;
207 //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
208 // ecut<0 means that there is no cut with energy axis, i.e. xs is set
209 // to 0 bellow minimum
210 // if (cut < 0.) ecut2 = ecut - 2.;
211 if (cut < 0.) { ecut2 = ecut; }
212 elab = K * FragmentA / G4double(ResidualA);
213 sig = 0.;
214
215 if (elab <= ec) { //start for E<Ec
216 if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
217 } //end for E<Ec
218 else { //start for E>Ec
219 sig = (landa*elab+mu+nu/elab) * signor;
220 geom = 0.;
221 if (xnulam < flow || elab < etest) { return sig; }
222 geom = std::sqrt(theA*K);
223 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
224 geom = 31.416 * geom * geom;
225 sig = std::max(geom,sig);
226 } //end for E>Ec
227 return sig;
228}
229
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double Z13(G4int Z)
Definition: G4Pow.hh:110
G4double powZ(G4int Z, G4double y)
Definition: G4Pow.hh:180