Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4KokoulinMuonNuclearXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Author: D.H. Wright
28// Date: 1 February 2011
29//
30// Modified:
31//
32// 19 Aug 2011, V.Ivanchenko move to new design and make x-section per element
33
34// Description: use Kokoulin's parameterized calculation of virtual
35// photon production cross section and conversion to
36// real photons.
37
39
41#include "G4SystemOfUnits.hh"
42#include "G4PhysicsLogVector.hh"
43#include "G4PhysicsVector.hh"
44#include "G4MuonMinus.hh"
45#include "G4MuonPlus.hh"
46#include "G4NucleiProperties.hh"
47#include "G4NistManager.hh"
48#include "G4Log.hh"
49#include "G4Exp.hh"
50
51// factory
53//
55
56G4PhysicsVector* G4KokoulinMuonNuclearXS::theCrossSection[] = {0};
57
59 :G4VCrossSectionDataSet(Default_Name()),
60 LowestKineticEnergy(1*GeV), HighestKineticEnergy(1*PeV),
61 TotBin(60), CutFixed(0.2*GeV), isInitialized(false), isMaster(false)
62{}
63
65{
66 if (isMaster) {
67 for(G4int i=0; i<MAXZMUN; ++i) {
68 delete theCrossSection[i];
69 theCrossSection[i] = 0;
70 }
71 }
72}
73
74
75void
77{
78 outFile << "G4KokoulinMuonNuclearXS provides the total inelastic\n"
79 << "cross section for mu- and mu+ interactions with nuclei.\n"
80 << "R. Kokoulin's approximation of the Borog and Petrukhin double\n"
81 << "differential cross section at high energy and low Q**2 is integrated\n"
82 << "over the muon energy loss to get the total cross section as a\n"
83 << "function of muon kinetic energy\n" ;
84}
85
86
87G4bool
93
94void
96{
97 if(!isInitialized) {
98 isInitialized = true;
99 for(G4int i=0; i<MAXZMUN; ++i) {
100 if(theCrossSection[i]) { return; }
101 }
102 isMaster = true;
103 }
104 if(isMaster) { BuildCrossSectionTable(); }
105}
106
108{
109 G4double energy, A, Value;
110 G4int Z;
111
112 std::size_t nEl = G4Element::GetNumberOfElements();
113 const G4ElementTable* theElementTable = G4Element::GetElementTable();
114 G4NistManager* nistManager = G4NistManager::Instance();
115
116 for (std::size_t j = 0; j < nEl; ++j) {
117 Z = G4lrint((*theElementTable)[j]->GetZ());
118
119 //AR-24Apr2018 Switch to treat transuranic elements as uranium
120 const G4bool isHeavyElementAllowed = true; if ( isHeavyElementAllowed && Z>92 ) Z=92;
121
122 A = nistManager->GetAtomicMassAmu(Z);
123 if(Z < MAXZMUN && !theCrossSection[Z]) {
124 theCrossSection[Z] = new G4PhysicsLogVector(LowestKineticEnergy,
125 HighestKineticEnergy,
126 TotBin);
127 for (G4int i = 0; i <= TotBin; ++i) {
128 energy = theCrossSection[Z]->Energy(i);
129 Value = ComputeMicroscopicCrossSection(energy, A);
130 theCrossSection[Z]->PutValue(i,Value);
131 }
132 }
133 }
134}
135
136G4double G4KokoulinMuonNuclearXS::
137ComputeMicroscopicCrossSection(G4double KineticEnergy, G4double A)
138{
139 // Calculate cross section (differential in muon incident kinetic energy) by
140 // integrating the double differential cross section over the energy loss
141
142 static const G4double xgi[] =
143 {0.0199,0.1017,0.2372,0.4083,0.5917,0.7628,0.8983,0.9801};
144 static const G4double wgi[] =
145 {0.0506,0.1112,0.1569,0.1813,0.1813,0.1569,0.1112,0.0506};
146 static const G4double ak1 = 6.9;
147 static const G4double ak2 = 1.0;
148
150
151 G4double CrossSection = 0.0;
152 if (KineticEnergy <= CutFixed) return CrossSection;
153
154 G4double epmin = CutFixed;
155 G4double epmax = KineticEnergy + Mass - 0.5*proton_mass_c2;
156 if (epmax <= epmin) return CrossSection; // NaN bug correction
157
158 G4double aaa = G4Log(epmin);
159 G4double bbb = G4Log(epmax);
160 G4int kkk = std::max(1,G4int((bbb-aaa)/ak1 +ak2));
161 G4double hhh = (bbb-aaa)/kkk ;
162 G4double epln;
163 G4double ep;
164 G4double x;
165
166 for (G4int l = 0; l < kkk; ++l) {
167 x = aaa + hhh*l;
168 for (G4int ll = 0; ll < 8; ++ll) {
169 epln=x+xgi[ll]*hhh;
170 ep = G4Exp(epln);
171 CrossSection +=
172 ep*wgi[ll]*ComputeDDMicroscopicCrossSection(KineticEnergy, 0, A, ep);
173 }
174 }
175
176 CrossSection *= hhh ;
177 if (CrossSection < 0.) { CrossSection = 0.; }
178 return CrossSection;
179}
180
184{
185 // Calculate the double-differential microscopic cross section (in muon
186 // incident kinetic energy and energy loss) using the cross section formula
187 // of R.P. Kokoulin (18/01/98)
188
189 static const G4double alam2 = 0.400*GeV*GeV;
190 static const G4double alam = 0.632456*GeV;
191 static const G4double coeffn = fine_structure_const/pi;
192
193 G4double ParticleMass = G4MuonMinus::MuonMinus()->GetPDGMass();
194 G4double TotalEnergy = KineticEnergy + ParticleMass;
195
196 G4double DCrossSection = 0.;
197
198 if ((epsilon >= TotalEnergy - 0.5*proton_mass_c2) ||
199 (epsilon <= CutFixed) ) { return DCrossSection; }
200
201 G4double ep = epsilon/GeV;
202 G4double aeff = 0.22*A+0.78*G4Exp(0.89*G4Log(A)); //shadowing
203 G4double sigph = (49.2+11.1*G4Log(ep)+151.8/std::sqrt(ep))*microbarn;
204
205 G4double v = epsilon/TotalEnergy;
206 G4double v1 = 1.-v;
207 G4double v2 = v*v;
208 G4double mass2 = ParticleMass*ParticleMass;
209
210 G4double up = TotalEnergy*TotalEnergy*v1/mass2*(1.+mass2*v2/(alam2*v1));
211 G4double down = 1.+epsilon/alam*(1.+alam/(2.*proton_mass_c2)+epsilon/alam);
212
213 DCrossSection = coeffn*aeff*sigph/epsilon*
214 (-v1+(v1+0.5*v2*(1.+2.*mass2/alam2))*G4Log(up/down));
215
216 if (DCrossSection < 0.) { DCrossSection = 0.; }
217 return DCrossSection;
218}
219
222 G4int ZZ, const G4Material*)
223{
224 //AR-24Apr2018 Switch to treat transuranic elements as uranium
225 G4int Z = std::min(ZZ, 92);
226 return theCrossSection[Z]->LogVectorValue(aPart->GetKineticEnergy(),
227 aPart->GetLogKineticEnergy());
228}
229
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double epsilon(G4double density, G4double temperature)
std::vector< G4Element * > G4ElementTable
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
const G4int MAXZMUN
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
G4double GetLogKineticEnergy() const
G4double GetKineticEnergy() const
static G4ElementTable * GetElementTable()
Definition G4Element.cc:389
static size_t GetNumberOfElements()
Definition G4Element.cc:393
G4double GetElementCrossSection(const G4DynamicParticle *particle, G4int Z, const G4Material *)
virtual void CrossSectionDescription(std::ostream &) const
void BuildPhysicsTable(const G4ParticleDefinition &)
G4double ComputeDDMicroscopicCrossSection(G4double incidentKE, G4double Z, G4double A, G4double epsilon)
G4bool IsElementApplicable(const G4DynamicParticle *particle, G4int Z, const G4Material *)
static G4MuonMinus * MuonMinus()
static G4NistManager * Instance()
G4double GetAtomicMassAmu(const G4String &symb) const
void PutValue(const std::size_t index, const G4double value)
G4double Energy(const std::size_t index) const
G4double LogVectorValue(const G4double energy, const G4double theLogEnergy) const
int G4lrint(double ad)
Definition templates.hh:134