Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4XTRGammaRadModel.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26///////////////////////////////////////////////////////////////////////////
27//
28// Rough model describing a gamma function distributed radiator of X-ray
29// transition radiation. XTR is considered to flux after radiator!
30// Thicknesses of plates and gas gaps are distributed according to gamma
31// distribution. x are thicknesses of plates or gas gaps:
32//
33// p(x) = (alpha/<x>)^alpha * x^(alpha-1) * std::exp(-alpha*x/<x>) / G(alpha)
34//
35// G(alpha) is Euler's gamma function.
36// Plates have mean <x> = fPlateThick > 0 and power alpha = fAlphaPlate > 0 :
37// Gas gaps have mean <x> = fGasThick > 0 and power alpha = fAlphaGas > 0 :
38// We suppose that:
39// formation zone ~ mean thickness << absorption length
40// for each material and in the range 1-100 keV. This allows us to simplify
41// interference effects in radiator stack (GetStackFactor method).
42//
43// History:
44//
45// 03.10.05 V. Grichine, first version
46//
47
48#ifndef G4XTRGammaRadModel_h
49#define G4XTRGammaRadModel_h 1
50
51#include "G4LogicalVolume.hh"
52#include "G4Material.hh"
53#include "G4VXTRenergyLoss.hh"
54
56{
57 public:
60 G4int,
61 const G4String& processName = "XTRgammaRadiator");
63
64 void ProcessDescription(std::ostream&) const override;
65 void DumpInfo() const override { ProcessDescription(G4cout); };
66
68 G4double varAngle) override;
69};
70
71#endif
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4GLOB_DLL std::ostream G4cout
void ProcessDescription(std::ostream &) const override
G4XTRGammaRadModel(G4LogicalVolume *anEnvelope, G4double, G4double, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRgammaRadiator")
void DumpInfo() const override
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override