Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4XTRGammaRadModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27#include "G4XTRGammaRadModel.hh"
28
29////////////////////////////////////////////////////////////////////////////
30// Constructor, destructor
32 G4double alphaPlate, G4double alphaGas,
33 G4Material* foilMat, G4Material* gasMat,
34 G4double a, G4double b, G4int n,
35 const G4String& processName)
36 : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName)
37{
38 G4cout << "Gamma distributed X-ray TR radiator model is called" << G4endl;
39
40 // Build energy and angular integral spectra of X-ray TR photons from
41 // a radiator
42 fAlphaPlate = alphaPlate;
43 fAlphaGas = alphaGas;
44 G4cout << "fAlphaPlate = " << fAlphaPlate << " ; fAlphaGas = " << fAlphaGas
45 << G4endl;
46 fExitFlux = true;
47}
48
49///////////////////////////////////////////////////////////////////////////
51
52void G4XTRGammaRadModel::ProcessDescription(std::ostream& out) const
53{
54 out << "Rough model describing X-ray transition radiation. Thicknesses of "
55 "plates\n"
56 "and gas gaps are distributed according to gamma distributions.\n";
57}
58
59///////////////////////////////////////////////////////////////////////////
60// Rough approximation for radiator interference factor for the case of
61// fully GamDistr radiator. The plate and gas gap thicknesses are distributed
62// according to exponent. The mean values of the plate and gas gap thicknesses
63// are supposed to be about XTR formation zones but much less than
64// mean absorption length of XTR photons in coresponding material.
66 G4double varAngle)
67{
68 G4double result, Qa, Qb, Q, Za, Zb, Ma, Mb;
69
70 Za = GetPlateFormationZone(energy, gamma, varAngle);
71 Zb = GetGasFormationZone(energy, gamma, varAngle);
72
73 Ma = GetPlateLinearPhotoAbs(energy);
74 Mb = GetGasLinearPhotoAbs(energy);
75
76 Qa = (1.0 + fPlateThick * Ma / fAlphaPlate);
77 Qa = std::pow(Qa, -fAlphaPlate);
78 Qb = (1.0 + fGasThick * Mb / fAlphaGas);
79 Qb = std::pow(Qb, -fAlphaGas);
80 Q = Qa * Qb;
81
82 G4complex Ca(1.0 + 0.5 * fPlateThick * Ma / fAlphaPlate,
84 G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fAlphaGas,
85 fGasThick / Zb / fAlphaGas);
86
87 G4complex Ha = std::pow(Ca, -fAlphaPlate);
88 G4complex Hb = std::pow(Cb, -fAlphaGas);
89 G4complex H = Ha * Hb;
90
91 G4complex F1 = (0.5 * (1 + Qa) * (1.0 + H) - Ha - Qa * Hb) / (1.0 - H);
92
93 G4complex F2 = (1.0 - Ha) * (Qa - Ha) * Hb / (1.0 - H) / (Q - H);
94
95 F2 *= std::pow(Q, G4double(fPlateNumber)) - std::pow(H, fPlateNumber);
96
97 result = (1. - std::pow(Q, G4double(fPlateNumber))) / (1. - Q);
98
99 G4complex stack = result * F1;
100 stack += F2;
101 stack *= 2.0 * OneInterfaceXTRdEdx(energy, gamma, varAngle);
102
103 result = std::real(stack);
104
105 return result;
106}
double G4double
Definition G4Types.hh:83
std::complex< G4double > G4complex
Definition G4Types.hh:88
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
void ProcessDescription(std::ostream &) const override
G4XTRGammaRadModel(G4LogicalVolume *anEnvelope, G4double, G4double, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRgammaRadiator")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override