Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLCoulombNonRelativistic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
38/** \file G4INCLCoulombNonRelativistic.cc
39 * \brief Class for non-relativistic Coulomb distortion.
40 *
41 * \date 14 February 2011
42 * \author Davide Mancusi
43 */
44
46#include "G4INCLGlobals.hh"
47
48namespace G4INCL {
49
51 // No distortion for neutral particles
52 if(p->getZ()!=0) {
53 const G4bool success = coulombDeviation(p, n);
54 if(!success) // transparent
55 return NULL;
56 }
57
58 // Rely on the CoulombNone slave to compute the straight-line intersection
59 // and actually bring the particle to the surface of the nucleus
60 return theCoulombNoneSlave.bringToSurface(p,n);
61 }
62
64 // Neutral clusters?!
65// assert(c->getZ()>0);
66
67 // Perform the actual Coulomb deviation
68 const G4bool success = coulombDeviation(c, n);
69 if(!success) {
70 return IAvatarList();
71 }
72
73 // Rely on the CoulombNone slave to compute the straight-line intersection
74 // and actually bring the particle to the surface of the nucleus
75 return theCoulombNoneSlave.bringToSurface(c,n);
76 }
77
79 Nucleus const * const nucleus) const {
80
81 for(ParticleIter particle=pL.begin(), e=pL.end(); particle!=e; ++particle) {
82
83 const G4int Z = (*particle)->getZ();
84 if(Z == 0) continue;
85
86 const G4double tcos=1.-0.000001;
87
88 const G4double et1 = PhysicalConstants::eSquared * nucleus->getZ();
89 const G4double transmissionRadius =
90 nucleus->getDensity()->getTransmissionRadius(*particle);
91
92 const ThreeVector position = (*particle)->getPosition();
93 ThreeVector momentum = (*particle)->getMomentum();
94 const G4double r = position.mag();
95 const G4double p = momentum.mag();
96 const G4double cosTheta = position.dot(momentum)/(r*p);
97 if(cosTheta < 0.999999) {
98 const G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
99 const G4double eta = et1 * Z / (*particle)->getKineticEnergy();
100 if(eta > transmissionRadius-0.0001) {
101 // If below the Coulomb barrier, radial emission:
102 momentum = position * (p/r);
103 (*particle)->setMomentum(momentum);
104 } else {
105 const G4double b0 = 0.5 * (eta + std::sqrt(eta*eta +
106 4. * std::pow(transmissionRadius*sinTheta,2)
107 * (1.-eta/transmissionRadius)));
108 const G4double bInf = std::sqrt(b0*(b0-eta));
109 const G4double thr = std::atan(eta/(2.*bInf));
110 G4double uTemp = (1.-b0/transmissionRadius) * std::sin(thr) +
111 b0/transmissionRadius;
112 if(uTemp>tcos) uTemp=tcos;
113 const G4double thd = Math::arcCos(cosTheta)-Math::piOverTwo + thr +
114 Math::arcCos(uTemp);
115 const G4double c1 = std::sin(thd)*cosTheta/sinTheta + std::cos(thd);
116 const G4double c2 = -p*std::sin(thd)/(r*sinTheta);
117 const ThreeVector newMomentum = momentum*c1 + position*c2;
118 (*particle)->setMomentum(newMomentum);
119 }
120 }
121 }
122 }
123
125 Nucleus const * const n) const {
126 const G4double theMinimumDistance = minimumDistance(p, kinE, n);
127 G4double rMax = n->getUniverseRadius();
128 if(p.theType == Composite)
130 const G4double theMaxImpactParameterSquared = rMax*(rMax-theMinimumDistance);
131 if(theMaxImpactParameterSquared<=0.)
132 return 0.;
133 const G4double theMaxImpactParameter = std::sqrt(theMaxImpactParameterSquared);
134 return theMaxImpactParameter;
135 }
136
137 G4bool CoulombNonRelativistic::coulombDeviation(Particle * const p, Nucleus const * const n) const {
138 // Determine the rotation angle and the new impact parameter
139 ThreeVector positionTransverse = p->getTransversePosition();
140 const G4double impactParameterSquared = positionTransverse.mag2();
141 const G4double impactParameter = std::sqrt(impactParameterSquared);
142
143 // Some useful variables
144 const G4double theMinimumDistance = minimumDistance(p, n);
145 // deltaTheta2 = (pi - Rutherford scattering angle)/2
146 G4double deltaTheta2 = std::atan(2.*impactParameter/theMinimumDistance);
147 if(deltaTheta2<0.)
148 deltaTheta2 += Math::pi;
149 const G4double eccentricity = 1./std::cos(deltaTheta2);
150
151 G4double newImpactParameter, alpha; // Parameters that must be determined by the deviation
152
153 const G4double radius = getCoulombRadius(p->getSpecies(), n);
154 const G4double impactParameterTangentSquared = radius*(radius-theMinimumDistance);
155 if(impactParameterSquared >= impactParameterTangentSquared) {
156 // The particle trajectory misses the Coulomb sphere
157 // In this case the new impact parameter is the minimum distance of
158 // approach of the hyperbola
159// assert(std::abs(1. + 2.*impactParameter*impactParameter/(radius*theMinimumDistance))>=eccentricity);
160 newImpactParameter = 0.5 * theMinimumDistance * (1.+eccentricity); // the minimum distance of approach
161 alpha = Math::piOverTwo - deltaTheta2; // half the Rutherford scattering angle
162 } else {
163 // The particle trajectory intersects the Coulomb sphere
164
165 // Compute the entrance angle
166 const G4double argument = -(1. + 2.*impactParameter*impactParameter/(radius*theMinimumDistance))
167 / eccentricity;
168 const G4double thetaIn = Math::twoPi - Math::arcCos(argument) - deltaTheta2;
169
170 // Velocity angle at the entrance point
171 alpha = std::atan((1+std::cos(thetaIn))
172 / (std::sqrt(eccentricity*eccentricity-1.) - std::sin(thetaIn)))
173 * Math::sign(theMinimumDistance);
174 // New impact parameter
175 newImpactParameter = radius * std::sin(thetaIn - alpha);
176 }
177
178 // Modify the impact parameter of the particle
179 positionTransverse *= newImpactParameter/positionTransverse.mag();
180 const ThreeVector theNewPosition = p->getLongitudinalPosition() + positionTransverse;
181 p->setPosition(theNewPosition);
182
183 // Determine the rotation axis for the incoming particle
184 const ThreeVector &momentum = p->getMomentum();
185 ThreeVector rotationAxis = momentum.vector(positionTransverse);
186 const G4double axisLength = rotationAxis.mag();
187 // Apply the rotation
188 if(axisLength>1E-20) {
189 rotationAxis /= axisLength;
190 p->rotatePositionAndMomentum(alpha, rotationAxis);
191 }
192
193 return true;
194 }
195
196 G4double CoulombNonRelativistic::getCoulombRadius(ParticleSpecies const &p, Nucleus const * const n) const {
197 if(p.theType == Composite) {
198 const G4int Zp = p.theZ;
199 const G4int Ap = p.theA;
200 const G4int Zt = n->getZ();
201 const G4int At = n->getA();
202 G4double barr, radius = 0.;
203 if(Zp==1 && Ap==2) { // d
204 barr = 0.2565*Math::pow23((G4double)At)-0.78;
205 radius = PhysicalConstants::eSquared*Zp*Zt/barr - 2.5;
206 } else if(Zp==1 && Ap==3) { // t
207 barr = 0.5*(0.5009*Math::pow23((G4double)At)-1.16);
208 radius = PhysicalConstants::eSquared*Zt/barr - 0.5;
209 } else if(Zp==2) { // alpha, He3
210 barr = 0.5939*Math::pow23((G4double)At)-1.64;
211 radius = PhysicalConstants::eSquared*Zp*Zt/barr - 0.5;
212 } else if(Zp>2) {
213 // Coulomb radius from the Shen model
214 const G4double Ap13 = Math::pow13((G4double)Ap);
215 const G4double At13 = Math::pow13((G4double)At);
216 const G4double rp = 1.12*Ap13 - 0.94/Ap13;
217 const G4double rt = 1.12*At13 - 0.94/At13;
218 const G4double someRadius = rp+rt+3.2;
219 const G4double theShenBarrier = PhysicalConstants::eSquared*Zp*Zt/someRadius - rt*rp/(rt+rp);
220 radius = PhysicalConstants::eSquared*Zp*Zt/theShenBarrier;
221 }
222 if(radius<=0.) {
224 INCL_ERROR("Negative Coulomb radius! Using the sum of nuclear radii = " << radius << '\n');
225 }
226 INCL_DEBUG("Coulomb radius for particle "
227 << ParticleTable::getShortName(p) << " in nucleus A=" << At <<
228 ", Z=" << Zt << ": " << radius << '\n');
229 return radius;
230 } else
231 return n->getUniverseRadius();
232 }
233
234}
Class for non-relativistic Coulomb distortion.
#define INCL_ERROR(x)
#define INCL_DEBUG(x)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
void distortOut(ParticleList const &pL, Nucleus const *const n) const
Modify the momenta of the outgoing particles.
G4double maxImpactParameter(ParticleSpecies const &p, const G4double kinE, Nucleus const *const n) const
Return the maximum impact parameter for Coulomb-distorted trajectories.
ParticleEntryAvatar * bringToSurface(Particle *const p, Nucleus *const n) const
Modify the momentum of the particle and position it on the surface of the nucleus.
ParticleEntryAvatar * bringToSurface(Particle *const p, Nucleus *const n) const
Position the particle on the surface of the nucleus.
G4double getTransmissionRadius(Particle const *const p) const
The radius used for calculating the transmission coefficient.
NuclearDensity const * getDensity() const
Getter for theDensity.
virtual G4INCL::ParticleSpecies getSpecies() const
Get the particle species.
virtual void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis)
Rotate the particle position and momentum.
G4int getZ() const
Returns the charge number.
ThreeVector getLongitudinalPosition() const
Longitudinal component of the position w.r.t. the momentum.
const G4INCL::ThreeVector & getMomentum() const
ThreeVector getTransversePosition() const
Transverse component of the position w.r.t. the momentum.
virtual void setPosition(const G4INCL::ThreeVector &position)
G4double mag2() const
ThreeVector vector(const ThreeVector &v) const
const G4double pi
const G4double twoPi
G4double pow13(G4double x)
G4double arcCos(const G4double x)
Calculates arccos with some tolerance on illegal arguments.
const G4double piOverTwo
G4double pow23(G4double x)
G4int sign(const T t)
G4double getLargestNuclearRadius(const G4int A, const G4int Z)
std::string getShortName(const ParticleType t)
Get the short INCL name of the particle.
const G4double eSquared
Coulomb conversion factor [MeV*fm].
ParticleList::const_iterator ParticleIter
UnorderedVector< IAvatar * > IAvatarList