Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EmCaptureCascade Class Reference

#include <G4EmCaptureCascade.hh>

+ Inheritance diagram for G4EmCaptureCascade:

Public Member Functions

 G4EmCaptureCascade ()
 
virtual ~G4EmCaptureCascade ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 66 of file G4EmCaptureCascade.hh.

Constructor & Destructor Documentation

◆ G4EmCaptureCascade()

G4EmCaptureCascade::G4EmCaptureCascade ( )
explicit

Definition at line 55 of file G4EmCaptureCascade.cc.

56 : G4HadronicInteraction("emCaptureCascade")
57{
58 theElectron = G4Electron::Electron();
59 theGamma = G4Gamma::Gamma();
61 fTime = 0.0;
62
63 // Calculate the Energy of K Mesoatom Level for this Element using
64 // the Energy of Hydrogen Atom taken into account finite size of the
65 // nucleus
66 static const G4int nlevels = 28;
67 static const G4int listK[nlevels] = {
68 1, 2, 4, 6, 8, 11, 14, 17, 18, 21, 24,
69 26, 29, 32, 38, 40, 41, 44, 49, 53, 55,
70 60, 65, 70, 75, 81, 85, 92};
71 static const G4double listKEnergy[nlevels] = {
72 0.00275, 0.011, 0.043, 0.098, 0.173, 0.326,
73 0.524, 0.765, 0.853, 1.146, 1.472,
74 1.708, 2.081, 2.475, 3.323, 3.627,
75 3.779, 4.237, 5.016, 5.647, 5.966,
76 6.793, 7.602, 8.421, 9.249, 10.222,
77 10.923,11.984};
78
79 fKLevelEnergy[0] = 0.0;
80 fKLevelEnergy[1] = listKEnergy[0];
81 G4int idx = 1;
82 for(G4int i=1; i<nlevels; ++i) {
83 G4int z1 = listK[idx];
84 G4int z2 = listK[i];
85 if(z1+1 < z2) {
86 G4double dz = G4double(z2 - z1);
87 G4double y1 = listKEnergy[idx]/G4double(z1*z1);
88 G4double y2 = listKEnergy[i]/G4double(z2*z2);
89 for(G4int z=z1+1; z<z2; ++z) {
90 fKLevelEnergy[z] = (y1 + (y2 - y1)*(z - z1)/dz)*z*z;
91 }
92 }
93 fKLevelEnergy[z2] = listKEnergy[i];
94 idx = i;
95 }
96 for(G4int i = 0; i<14; ++i) { fLevelEnergy[i] = 0.0; }
97}
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
static G4Electron * Electron()
Definition G4Electron.cc:91
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
G4HadronicInteraction(const G4String &modelName="HadronicModel")
static G4MuonMinus * MuonMinus()

◆ ~G4EmCaptureCascade()

G4EmCaptureCascade::~G4EmCaptureCascade ( )
virtual

Definition at line 101 of file G4EmCaptureCascade.cc.

102{}

Member Function Documentation

◆ ApplyYourself()

G4HadFinalState * G4EmCaptureCascade::ApplyYourself ( const G4HadProjectile & aTrack,
G4Nucleus & targetNucleus )
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 107 of file G4EmCaptureCascade.cc.

109{
110 result.Clear();
111 result.SetStatusChange(isAlive);
112 fTime = projectile.GetGlobalTime();
113
114 G4int Z = targetNucleus.GetZ_asInt();
115 G4int A = targetNucleus.GetA_asInt();
117 G4double mass = fMuMass * massA / (fMuMass + massA) ;
118 G4double e = 13.6 * eV * (Z * Z) * mass/ electron_mass_c2;
119
120 // precise corrections of energy only for K-shell
121 fLevelEnergy[0] = fKLevelEnergy[std::min(Z, 92)];
122 for(G4int i=1; i<14; ++i) {
123 fLevelEnergy[i] = e/(G4double)((i+1)*(i+1));
124 }
125
126 G4int nElec = Z;
127 G4int nAuger = 1;
128 G4int nLevel = 13;
129 G4double pGamma = (Z*Z*Z*Z);
130
131 // Capture on 14-th level
132 G4double edep = fLevelEnergy[13];
133 AddNewParticle(theElectron,edep);
134 G4double deltaE;
135
136 // Emit new photon or electron
137 // Simplified model for probabilities
138 // N.C.Mukhopadhyay Phy. Rep. 30 (1977) 1.
139 do {
140
141 // case of Auger electrons
142 if((nAuger < nElec) && ((pGamma + 10000.0) * G4UniformRand() < 10000.0) ) {
143 ++nAuger;
144 deltaE = fLevelEnergy[nLevel-1] - fLevelEnergy[nLevel];
145 --nLevel;
146 AddNewParticle(theElectron, deltaE);
147
148 } else {
149
150 // Case of photon cascade, probabilities from
151 // C.S.Wu and L.Wilets, Ann. Rev. Nuclear Sci. 19 (1969) 527.
152
153 G4double var = (10.0 + G4double(nLevel - 1) ) * G4UniformRand();
154 G4int iLevel = nLevel - 1 ;
155 if(var > 10.0) iLevel -= G4int(var-10.0) + 1;
156 if( iLevel < 0 ) iLevel = 0;
157 deltaE = fLevelEnergy[iLevel] - fLevelEnergy[nLevel];
158 nLevel = iLevel;
159 AddNewParticle(theGamma, deltaE);
160 }
161 edep += deltaE;
162
163 // Loop checking, 06-Aug-2015, Vladimir Ivanchenko
164 } while( nLevel > 0 );
165
166 result.SetLocalEnergyDeposit(edep);
167 return &result;
168}
@ isAlive
const G4double A[17]
#define G4UniformRand()
Definition Randomize.hh:52
void SetStatusChange(G4HadFinalStateStatus aS)
void SetLocalEnergyDeposit(G4double aE)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105

◆ ModelDescription()

void G4EmCaptureCascade::ModelDescription ( std::ostream & outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 172 of file G4EmCaptureCascade.cc.

173{
174 outFile << "Simulation of electromagnetic cascade from capture level"
175 << " to K-shell of the mesonic atom\n."
176 << "Probabilities of gamma and Auger transitions from\n"
177 << " N.C.Mukhopadhyay Phys. Rep. 30 (1977) 1.\n";
178}

The documentation for this class was generated from the following files: