121 PrintWelcomeMessage();
125 useAblation = useAblation1;
126 theAblation =
nullptr;
153 conserveEnergy =
false;
154 conserveMomentum =
true;
162 outFile <<
"G4WilsonAbrasionModel is a macroscopic treatment of\n"
163 <<
"nucleus-nucleus collisions using simple geometric arguments.\n"
164 <<
"The smaller projectile nucleus gouges out a part of the larger\n"
165 <<
"target nucleus, leaving a residual nucleus and a fireball\n"
166 <<
"region where the projectile and target intersect. The fireball"
167 <<
"is then treated as a highly excited nuclear fragment. This\n"
168 <<
"model is based on the NUCFRG2 model and is valid for all\n"
169 <<
"projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
177 PrintWelcomeMessage();
183 theAblation =
nullptr;
191 theExcitationHandler = aExcitationHandler;
210 conserveEnergy =
false;
211 conserveMomentum =
true;
220 delete theExcitationHandler;
261 G4cout <<
"########################################"
262 <<
"########################################"
266 G4cout <<
"Initial projectile A=" <<AP
268 <<
", radius = " <<rP/fermi <<
" fm"
270 G4cout <<
"Initial target A=" <<AT
272 <<
", radius = " <<rT/fermi <<
" fm"
274 G4cout <<
"Projectile momentum and Energy/nuc = " <<pP <<
" ," <<E <<
G4endl;
281 G4double rm = ZP * ZT * elm_coupling / (E * AP);
299 G4bool skipInteraction =
false;
300 const G4int maxNumberOfLoops = 1000;
301 G4int loopCounter = -1;
302 while (Dabr == 0 && ++loopCounter < maxNumberOfLoops)
319 if (rm >= fradius * rPT) {
320 skipInteraction =
true;
329 while (r > rPT && ++evtcnt < 1000)
332 r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
338 if (evtcnt >= 1000) {
339 skipInteraction =
true;
349 G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
350 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
351 else CT = 2.0 * std::sqrt(rTsq - rsq);
355 G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
356 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
367 delete theAbrasionGeometry;
369 F = theAbrasionGeometry->
F();
373 for (
G4int i = 0; i<10; ++i)
378 if (n>AP) Dabr = (
G4int) AP;
379 else Dabr = (
G4int) n;
385 if ( loopCounter >= maxNumberOfLoops || skipInteraction ) {
391 G4cout <<
"Particle energy too low to overcome repulsion." <<
G4endl;
392 G4cout <<
"Event rejected and original track maintained" <<
G4endl;
393 G4cout <<
"########################################"
394 <<
"########################################"
397 delete theAbrasionGeometry;
404 G4cout <<
"Impact parameter = " <<r/fermi <<
" fm" <<
G4endl;
425 G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
428 for (i=0; i<nSecP; ++i)
431 GetParticle()->GetTotalEnergy();
439 if (DspcP <= 0) DspcP = 0;
440 else if (DspcP > AP-Dabr) DspcP = ((
G4int) AP) - Dabr;
448 G4bool excitationAbsorbedByProjectile =
false;
449 if (fragmentP !=
nullptr)
455 if (excitationAbsorbedByProjectile)
456 ExP = GetNucleonInducedExcitation(rP, rT, r);
458 if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
460 lorentzVector.
setE(lorentzVector.e()+xP);
462 TotalEPost += lorentzVector.e();
474 G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
476 for (i=nSecP; i<nSec; ++i)
479 GetParticle()->GetTotalEnergy();
487 if (DspcT <= 0) DspcT = 0;
488 else if (DspcT > AP-Dabr) DspcT = ((
G4int) AT) - Dabr;
496 if (fragmentT !=
nullptr)
500 if (!excitationAbsorbedByProjectile)
501 ExT = GetNucleonInducedExcitation(rT, rP, r);
503 if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
505 lorentzVector.
setE(lorentzVector.e()+xT);
507 TotalEPost += lorentzVector.e();
515 G4double deltaE = TotalEPre - TotalEPost;
516 if (deltaE > 0.0 && conserveEnergy)
519 boost = boost / boost.
mag() * beta;
526 for (i=0; i<nSecP; ++i)
531 lorentzVector.
boost(-boost);
533 pBalance -= lorentzVector.
vect();
545 if (fragmentP !=
nullptr)
549 if (conserveMomentum)
555 fragmentP->
SetMomentum(lorentzVector.
boost(-boost * fragmentGroundStateM/fragmentM));
565 G4cout <<
"-----------------------------------" <<
G4endl;
566 G4cout <<
"Secondary nucleons from projectile:" <<
G4endl;
567 G4cout <<
"-----------------------------------" <<
G4endl;
569 for (i=0; i<nSecP; ++i)
581 if (fragmentP !=
nullptr)
590 for (i=nSecP; i<nSec; ++i)
602 if (fragmentT !=
nullptr)
612 if (fragmentP !=
nullptr)
616 products = theExcitationHandler->
BreakItUp(*fragmentP);
622 G4ReactionProductVector::iterator iter;
623 for (iter = products->begin(); iter != products->end(); ++iter)
627 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
629 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
631 if (
verboseLevel >= 2 && particleName.find(
"[",0) < particleName.size())
636 G4cout <<
" fragmentP = " <<particleName
649 if (fragmentT !=
nullptr)
653 products = theExcitationHandler->
BreakItUp(*fragmentT);
659 G4ReactionProductVector::iterator iter;
660 for (iter = products->begin(); iter != products->end(); ++iter)
664 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
666 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
668 if (
verboseLevel >= 2 && particleName.find(
"[",0) < particleName.size())
673 G4cout <<
" fragmentT = " <<particleName
682 G4cout <<
"########################################"
683 <<
"########################################"
686 delete theAbrasionGeometry;
726 G4bool isForLoopExitAnticipated =
false;
727 for (
G4int i=0; i<Dabr; ++i)
736 const G4int maxNumberOfLoops = 100000;
737 G4int loopCounter = -1;
738 while (!found && ++loopCounter < maxNumberOfLoops)
745 if ( loopCounter >= maxNumberOfLoops )
747 isForLoopExitAnticipated =
true;
772 G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
774 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
776 G4double E = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
789 if ( ! isForLoopExitAnticipated && Z-Zabr>=1.0 )
793 G4double E = std::sqrt(pabr.mag2() + ionMass*ionMass);
803G4double G4WilsonAbrasionModel::GetNucleonInducedExcitation
819 if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
829 if (rT > rP && rsq < rTsq - rPsq) Ct = 2.0 * rP;
830 else if (rP > rT && rsq < rPsq - rTsq) Ct = 2.0 * rT;
832 G4double bP = (rPsq+rsq-rTsq)/2.0/r;
835 G4cerr <<
"########################################"
836 <<
"########################################"
838 G4cerr <<
"ERROR IN G4WilsonAbrasionModel::GetNucleonInducedExcitation"
840 G4cerr <<
"rPsq - bP*bP < 0.0 and cannot be square-rooted" <<
G4endl;
842 G4cerr <<
"########################################"
843 <<
"########################################"
846 Ct = 2.0*std::sqrt(x);
851 Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
859 if (useAblation != useAblation1)
861 useAblation = useAblation1;
870 delete theExcitationHandler;
871 theAblation =
nullptr;
879void G4WilsonAbrasionModel::PrintWelcomeMessage ()
882 G4cout <<
" *****************************************************************"
884 G4cout <<
" Nuclear abrasion model for nuclear-nuclear interactions activated"
886 G4cout <<
" (Written by QinetiQ Ltd for the European Space Agency)"
888 G4cout <<
" *****************************************************************"
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
CLHEP::HepLorentzVector G4LorentzVector
G4long G4Poisson(G4double mean)
std::vector< G4ReactionProduct * > G4ReactionProductVector
G4GLOB_DLL std::ostream G4cerr
G4GLOB_DLL std::ostream G4cout
HepLorentzVector & boost(double, double, double)
Hep3Vector findBoostToCM() const
void DumpInfo(G4int mode=0) const
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void Set4Momentum(const G4LorentzVector &momentum)
void SetEvaporation(G4VEvaporation *ptr, G4bool isLocal=false)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4double GetGroundStateMass() const
const G4LorentzVector & GetMomentum() const
void SetMomentum(const G4LorentzVector &value)
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
void SetEnergyChange(G4double anEnergy)
G4HadSecondary * GetSecondary(size_t i)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4DynamicParticle * GetParticle()
G4HadFinalState theParticleChange
void SetMinEnergy(G4double anEnergy)
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
static G4Neutron * NeutronDefinition()
G4double GetExcitationEnergyOfTarget()
G4double GetExcitationEnergyOfProjectile()
G4double AtomicMass(const G4double A, const G4double Z, const G4int numberOfLambdas=0) const
G4double GetEnergyDeposit()
G4double GetPDGMass() const
G4double GetPDGCharge() const
G4int GetBaryonNumber() const
const G4String & GetParticleName() const
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4int GetModelID(const G4int modelIndex)
static G4Pow * GetInstance()
G4double A13(G4double A) const
G4double powA(G4double A, G4double y) const
static G4Proton * ProtonDefinition()
void SetVerboseLevel(G4int)
virtual void ModelDescription(std::ostream &) const
G4WilsonAbrasionModel(G4bool useAblation1=false)
void SetUseAblation(G4bool)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &, G4Nucleus &)
G4double GetWilsonRadius(G4double A)