97 fData = fMaster =
false;
109 outFile <<
"G4NuMuNucleusCcModel is a neutrino-nucleus (charge current) scattering\n"
110 <<
"model which uses the standard model \n"
111 <<
"transfer parameterization. The model is fully relativistic\n";
124 G4int nSize(0), i(0), j(0), k(0);
128#ifdef G4MULTITHREADED
134#ifdef G4MULTITHREADED
143 std::ostringstream ost1, ost2, ost3, ost4;
144 ost1 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/xarraycckr";
146 std::ifstream filein1( ost1.str().c_str() );
152 for( k = 0; k <
fNbin; ++k )
154 for( i = 0; i <=
fNbin; ++i )
162 ost2 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/xdistrcckr";
163 std::ifstream filein2( ost2.str().c_str() );
167 for( k = 0; k <
fNbin; ++k )
169 for( i = 0; i <
fNbin; ++i )
177 ost3 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/q2arraycckr";
178 std::ifstream filein3( ost3.str().c_str() );
182 for( k = 0; k <
fNbin; ++k )
184 for( i = 0; i <=
fNbin; ++i )
186 for( j = 0; j <=
fNbin; ++j )
195 ost4 << path <<
"/" <<
"neutrino" <<
"/" << pName <<
"/q2distrcckr";
196 std::ifstream filein4( ost4.str().c_str() );
200 for( k = 0; k <
fNbin; ++k )
202 for( i = 0; i <=
fNbin; ++i )
204 for( j = 0; j <
fNbin; ++j )
278 G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.), massX(0.), massR(0.), eCut(0.);
284 G4int pdgP(0), qB(0);
296 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
298 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
332 if( pName ==
"nu_mu" ) pdgP = 211;
338 eCut = (
fMpi + mTarg)*(
fMpi + mTarg) - (massX + massR)*(massX + massR);
344 if ( lvX.
e() > eCut )
363 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
365 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
403 if( pName ==
"nu_mu" ) qB = 2;
437 if( pName ==
"nu_mu" )
455 if( pName ==
"nu_mu" )
485 fMr = proton_mass_c2;
514 if (
fProton && pName ==
"nu_mu" ) qB = 2;
516 else if( !
fProton && pName ==
"nu_mu" ) qB = 1;
539 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.
AtomicMass(
A,Z);
541 G4double cost(1.), sint(0.), phi(0.), muMom(0.);
573 if(pMu2 < 0.) {
fBreak =
true;
return; }
583 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
598 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
600 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
617 ei = tM - sqrt( (rM + Ex)*(rM + Ex) + nMom*nMom );
620 nm2 = ei*ei - nMom*nMom;
623 while( nm2 < 0. && iTer < iTerMax );
625 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
688 if(pMu2 < 0.) {
fBreak =
true;
return; }
696 if( iTer >= iTerMax ) {
fBreak =
true;
return; }
712 sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
714 eP =
G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
const char * G4FindDataDir(const char *)
CLHEP::HepLorentzVector G4LorentzVector
G4ThreeVector G4RandomDirection()
#define G4MUTEX_INITIALIZER
#define G4MUTEXLOCK(mutex)
#define G4MUTEXUNLOCK(mutex)
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4HadFinalState theParticleChange
void CoherentPion(G4LorentzVector &lvP, G4int pdgP, G4Nucleus &targetNucleus)
static G4double fNuMuQarrayKR[50][51][51]
static G4double fNuMuXarrayKR[50][51]
G4int GetOnePionIndex(G4double energy)
G4double SampleXkr(G4double energy)
G4ParticleDefinition * theMuonMinus
G4double SampleQkr(G4double energy, G4double xx)
G4double GgSampleNM(G4Nucleus &nucl)
G4double GetNuMuOnePionProb(G4int index, G4double energy)
static G4double fNuMuXdistrKR[50][50]
static G4double fNuMuQdistrKR[50][51][50]
G4double CalculateQEratioA(G4int Z, G4int A, G4double energy, G4int nepdg)
void ClusterDecay(G4LorentzVector &lvX, G4int qX)
void FinalBarion(G4LorentzVector &lvB, G4int qB, G4int pdgB)
void SampleLVkr(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4NuMuNucleusCcModel(const G4String &name="NuMuNuclCcModel")
virtual G4bool IsApplicable(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &) const
virtual ~G4NuMuNucleusCcModel()
virtual void InitialiseModel()
G4double AtomicMass(const G4double A, const G4double Z, const G4int numberOfLambdas=0) const
G4double GetPDGMass() const
G4int GetPDGEncoding() const
const G4String & GetParticleName() const
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()