Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ParticleHPNBodyPhaseSpace.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// P. Arce, June-2014 Conversion neutron_hp to particle_hp
29//
31
32#include "G4Alpha.hh"
33#include "G4Deuteron.hh"
34#include "G4Electron.hh"
35#include "G4Gamma.hh"
36#include "G4He3.hh"
37#include "G4Neutron.hh"
39#include "G4Positron.hh"
40#include "G4Proton.hh"
41#include "G4ThreeVector.hh"
42#include "G4Triton.hh"
43#include "Randomize.hh"
44
47{
48 auto result = new G4ReactionProduct;
49 auto Z = static_cast<G4int>(massCode / 1000);
50 auto A = static_cast<G4int>(massCode - 1000 * Z);
51
52 if (massCode == 0) {
53 result->SetDefinition(G4Gamma::Gamma());
54 }
55 else if (A == 0) {
56 result->SetDefinition(G4Electron::Electron());
57 if (Z == 1) result->SetDefinition(G4Positron::Positron());
58 }
59 else if (A == 1) {
60 result->SetDefinition(G4Neutron::Neutron());
61 if (Z == 1) result->SetDefinition(G4Proton::Proton());
62 }
63 else if (A == 2) {
64 result->SetDefinition(G4Deuteron::Deuteron());
65 }
66 else if (A == 3) {
67 result->SetDefinition(G4Triton::Triton());
68 if (Z == 2) result->SetDefinition(G4He3::He3());
69 }
70 else if (A == 4) {
71 result->SetDefinition(G4Alpha::Alpha());
72 if (Z != 2) throw G4HadronicException(__FILE__, __LINE__, "Unknown ion case 1");
73 }
74 else {
75 throw G4HadronicException(__FILE__, __LINE__,
76 "G4ParticleHPNBodyPhaseSpace: Unknown ion case 2");
77 }
78
79 // Get the energy from phase-space distribution
80 // in CMS
81 // P = Cn*std::sqrt(E')*(Emax-E')**(3*n/2-4)
82 G4double maxE = GetEmax(anEnergy, result->GetMass());
83 if (maxE <= 0) {
84 maxE = 1. * CLHEP::eV;
85 }
86 G4double energy = 0.;
87 G4double max(0);
88 if (theTotalCount <= 3) {
89 max = maxE / 2.;
90 }
91 else if (theTotalCount == 4) {
92 max = maxE / 5.;
93 }
94 else if (theTotalCount == 5) {
95 max = maxE / 8.;
96 }
97 else {
99 __FILE__, __LINE__,
100 "NeutronHP Phase-space distribution cannot cope with this number of particles");
101 }
102 G4double testit;
103 G4double rand0 = Prob(max, maxE, theTotalCount);
104 G4double rand;
105
106 G4int icounter = 0;
107 G4int icounter_max = 1024;
108 do {
109 icounter++;
110 if (icounter > icounter_max) {
111 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of "
112 << __FILE__ << "." << G4endl;
113 break;
114 }
115 rand = rand0 * G4UniformRand();
116 energy = maxE * G4UniformRand();
117 testit = Prob(energy, maxE, theTotalCount);
118 } while (rand > testit); // Loop checking, 11.05.2015, T. Koi
119 result->SetKineticEnergy(energy);
120
121 // now do random direction
122 G4double cosTh = 2. * G4UniformRand() - 1.;
123 G4double phi = twopi * G4UniformRand();
124 G4double theta = std::acos(cosTh);
125 G4double sinth = std::sin(theta);
126 G4double mtot = result->GetTotalMomentum();
127 G4ThreeVector tempVector(mtot * sinth * std::cos(phi), mtot * sinth * std::sin(phi),
128 mtot * std::cos(theta));
129 result->SetMomentum(tempVector);
131 result->Lorentz(*result, -1. * aCMS);
132 return result;
133}
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
static G4Alpha * Alpha()
Definition G4Alpha.cc:83
static G4Deuteron * Deuteron()
Definition G4Deuteron.cc:90
static G4Electron * Electron()
Definition G4Electron.cc:91
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
static G4He3 * He3()
Definition G4He3.cc:90
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
G4ReactionProduct * Sample(G4double anEnergy, G4double massCode, G4double mass) override
static G4Positron * Positron()
Definition G4Positron.cc:90
static G4Proton * Proton()
Definition G4Proton.cc:90
static G4Triton * Triton()
Definition G4Triton.cc:90
G4ReactionProduct * GetTarget() const
G4ReactionProduct * GetProjectileRP() const