Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsPionPlusElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections
30// Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
31// The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
32//
33// -------------------------------------------------------------------------------
34// Short description: Interaction cross-sections for the elastic process.
35// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
36// -------------------------------------------------------------------------------
37
38
40#include "G4SystemOfUnits.hh"
41#include "G4DynamicParticle.hh"
43#include "G4PionPlus.hh"
44#include "G4Nucleus.hh"
45#include "G4ParticleTable.hh"
46#include "G4NucleiProperties.hh"
47#include "G4IonTable.hh"
48#include "G4Log.hh"
49#include "G4Exp.hh"
50#include "G4Pow.hh"
51
52// factory
54//
56
57G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
58{
59 lPMin=-8.; // Min tabulated logarithmMomentum(D)
60 lPMax= 8.; // Max tabulated logarithmMomentum(D)
61 dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
62 onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
63 lastSIG=0.; // Last calculated cross section (L)
64 lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
65 lastTM=0.; // Last t_maximum (L)
66 theSS=0.; // TheLastSqSlope of 1st difr.Max(L)
67 theS1=0.; // TheLastMantissa of 1st difr.Max(L)
68 theB1=0.; // TheLastSlope of 1st difruct.Max(L)
69 theS2=0.; // TheLastMantissa of 2nd difr.Max(L)
70 theB2=0.; // TheLastSlope of 2nd difruct.Max(L)
71 theS3=0.; // TheLastMantissa of 3d difr. Max(L)
72 theB3=0.; // TheLastSlope of 3d difruct. Max(L)
73 theS4=0.; // TheLastMantissa of 4th difr.Max(L)
74 theB4=0.; // TheLastSlope of 4th difruct.Max(L)
75 lastTZ=0; // Last atomic number of the target
76 lastTN=0; // Last # of neutrons in the target
77 lastPIN=0.; // Last initialized max momentum
78 lastCST=0; // Elastic cross-section table
79 lastPAR=0; // ParametersForFunctionalCalculation
80 lastSST=0; // E-dep of SqaredSlope of 1st difMax
81 lastS1T=0; // E-dep of mantissa of 1st dif.Max
82 lastB1T=0; // E-dep of the slope of 1st difMax
83 lastS2T=0; // E-dep of mantissa of 2nd difrMax
84 lastB2T=0; // E-dep of the slope of 2nd difMax
85 lastS3T=0; // E-dep of mantissa of 3d difr.Max
86 lastB3T=0; // E-dep of the slope of 3d difrMax
87 lastS4T=0; // E-dep of mantissa of 4th difrMax
88 lastB4T=0; // E-dep of the slope of 4th difMax
89 lastN=0; // The last N of calculated nucleus
90 lastZ=0; // The last Z of calculated nucleus
91 lastP=0.; // LastUsed in cross section Momentum
92 lastTH=0.; // Last threshold momentum
93 lastCS=0.; // Last value of the Cross Section
94 lastI=0; // The last position in the DAMDB
95}
96
98{
99 std::vector<G4double*>::iterator pos;
100 for (pos=CST.begin(); pos<CST.end(); pos++)
101 { delete [] *pos; }
102 CST.clear();
103 for (pos=PAR.begin(); pos<PAR.end(); pos++)
104 { delete [] *pos; }
105 PAR.clear();
106 for (pos=SST.begin(); pos<SST.end(); pos++)
107 { delete [] *pos; }
108 SST.clear();
109 for (pos=S1T.begin(); pos<S1T.end(); pos++)
110 { delete [] *pos; }
111 S1T.clear();
112 for (pos=B1T.begin(); pos<B1T.end(); pos++)
113 { delete [] *pos; }
114 B1T.clear();
115 for (pos=S2T.begin(); pos<S2T.end(); pos++)
116 { delete [] *pos; }
117 S2T.clear();
118 for (pos=B2T.begin(); pos<B2T.end(); pos++)
119 { delete [] *pos; }
120 B2T.clear();
121 for (pos=S3T.begin(); pos<S3T.end(); pos++)
122 { delete [] *pos; }
123 S3T.clear();
124 for (pos=B3T.begin(); pos<B3T.end(); pos++)
125 { delete [] *pos; }
126 B3T.clear();
127 for (pos=S4T.begin(); pos<S4T.end(); pos++)
128 { delete [] *pos; }
129 S4T.clear();
130 for (pos=B4T.begin(); pos<B4T.end(); pos++)
131 { delete [] *pos; }
132 B4T.clear();
133}
134
135void
137{
138 outFile << "G4ChipsPionPlusElasticXS provides the elastic cross\n"
139 << "section for pion+ nucleus scattering as a function of incident\n"
140 << "momentum. The cross section is calculated using M. Kossov's\n"
141 << "CHIPS parameterization of cross section data.\n";
142}
143
145 const G4Element*,
146 const G4Material*)
147{
148 return true;
149}
150
151// The main member function giving the collision cross section (P is in IU, CS is in mb)
152// Make pMom in independent units ! (Now it is MeV)
154 const G4Isotope*,
155 const G4Element*,
156 const G4Material*)
157{
158 G4double pMom=Pt->GetTotalMomentum();
159 G4int tgN = A - tgZ;
160
161 return GetChipsCrossSection(pMom, tgZ, tgN, 211);
162}
163
165{
166 G4double pEn=pMom;
167 G4bool fCS = false;
168 onlyCS=fCS;
169
170 G4bool in=false; // By default the isotope must be found in the AMDB
171 lastP = 0.; // New momentum history (nothing to compare with)
172 lastN = tgN; // The last N of the calculated nucleus
173 lastZ = tgZ; // The last Z of the calculated nucleus
174 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
175 if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
176 { // The nucleus with projPDG is found in AMDB
177 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
178 {
179 lastI=i;
180 lastTH =colTH[i]; // Last THreshold (A-dependent)
181 if(pEn<=lastTH)
182 {
183 return 0.; // Energy is below the Threshold value
184 }
185 lastP =colP [i]; // Last Momentum (A-dependent)
186 lastCS =colCS[i]; // Last CrossSect (A-dependent)
187 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
188 if(lastP == pMom) // Do not recalculate
189 {
190 CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
191 return lastCS*millibarn; // Use theLastCS
192 }
193 in = true; // This is the case when the isotop is found in DB
194 // Momentum pMom is in IU ! @@ Units
195 lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
196 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
197 {
198 lastTH=pEn;
199 }
200 break; // Go out of the LOOP with found lastI
201 }
202 } // End of attampt to find the nucleus in DB
203 if(!in) // This nucleus has not been calculated previously
204 {
205 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
206 lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
207 if(lastCS<=0.)
208 {
209 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
210 if(pEn>lastTH)
211 {
212 lastTH=pEn;
213 }
214 }
215 colN.push_back(tgN);
216 colZ.push_back(tgZ);
217 colP.push_back(pMom);
218 colTH.push_back(lastTH);
219 colCS.push_back(lastCS);
220 return lastCS*millibarn;
221 } // End of creation of the new set of parameters
222 else
223 {
224 colP[lastI]=pMom;
225 colCS[lastI]=lastCS;
226 }
227 return lastCS*millibarn;
228}
229
230// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
231// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
232G4double G4ChipsPionPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
233 G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
234{
235 G4double pMom=pIU/GeV; // All calculations are in GeV
236 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
237 lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation
238 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
239 {
240 if(F<0) // the AMDB must be loded
241 {
242 lastPIN = PIN[I]; // Max log(P) initialised for this table set
243 lastPAR = PAR[I]; // Pointer to the parameter set
244 lastCST = CST[I]; // Pointer to the total sross-section table
245 lastSST = SST[I]; // Pointer to the first squared slope
246 lastS1T = S1T[I]; // Pointer to the first mantissa
247 lastB1T = B1T[I]; // Pointer to the first slope
248 lastS2T = S2T[I]; // Pointer to the second mantissa
249 lastB2T = B2T[I]; // Pointer to the second slope
250 lastS3T = S3T[I]; // Pointer to the third mantissa
251 lastB3T = B3T[I]; // Pointer to the rhird slope
252 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
253 lastB4T = B4T[I]; // Pointer to the 4-th slope
254 }
255 if(lastLP>lastPIN && lastLP<lPMax)
256 {
257 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
258 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
259 }
260 }
261 else // This isotope wasn't initialized => CREATE
262 {
263 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
264 lastPAR[nLast]=0; // Initialization for VALGRIND
265 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
266 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
267 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
268 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
269 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
270 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
271 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
272 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
273 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
274 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
275 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
276 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
277 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
278 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
279 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
280 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
281 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
282 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
283 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
284 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
285 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
286 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
287 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
288 } // End of creation/update of the new set of parameters and tables
289 // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
290 if(lastLP>lastPIN && lastLP<lPMax)
291 {
292 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
293 }
294 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
295 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
296 {
297 if(lastLP==lastPIN)
298 {
299 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
300 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
301 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
302 lastSIG = lastCST[blast];
303 if(!onlyCS) // Skip the differential cross-section parameters
304 {
305 theSS = lastSST[blast];
306 theS1 = lastS1T[blast];
307 theB1 = lastB1T[blast];
308 theS2 = lastS2T[blast];
309 theB2 = lastB2T[blast];
310 theS3 = lastS3T[blast];
311 theB3 = lastB3T[blast];
312 theS4 = lastS4T[blast];
313 theB4 = lastB4T[blast];
314 }
315 }
316 else
317 {
318 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
319 G4int blast=static_cast<int>(shift); // the lower bin number
320 if(blast<0) blast=0;
321 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
322 shift-=blast; // step inside the unit bin
323 G4int lastL=blast+1; // the upper bin number
324 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
325 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
326 if(!onlyCS) // Skip the differential cross-section parameters
327 {
328 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
329 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
330 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
331 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
332 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
333 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
334 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
335 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
336 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
337 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
338 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
339 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
340 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
341 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
342 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
343 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
344 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
345 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
346 }
347 }
348 }
349 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
350 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
351 return lastSIG;
352}
353
354// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
355G4double G4ChipsPionPlusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
356 G4int tgZ, G4int tgN)
357{
358 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
359 static const G4double pwd=2727;
360 const G4int n_pippel=35; // #of parameters for pip_p-elastic (<nPoints=128)
361 // -0- -1- -2- -3- -4- -5- -6- -7--8--9--10-11-12--13-
362 G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
363 3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
364 3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
365 // -14--15--16--17--18- -19--20- -21- -22- -23- -24- -25-
366 // -26- -27- -28- -29- -30- -31- -32- -33- -34-
367 if(PDG == 211)
368 {
369 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
370 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
371 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
372 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
373 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
374 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
375 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
376 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
377 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
378 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
379 //
380 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
381 {
382 if ( tgZ == 1 && tgN == 0 )
383 {
384 for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
385 }
386 else
387 {
388 G4double a=tgZ+tgN;
389 G4double sa=std::sqrt(a);
390 G4double ssa=std::sqrt(sa);
391 G4double asa=a*sa;
392 G4double a2=a*a;
393 G4double a3=a2*a;
394 G4double a4=a3*a;
395 G4double a5=a4*a;
396 G4double a6=a4*a2;
397 G4double a7=a6*a;
398 G4double a8=a7*a;
399 G4double a9=a8*a;
400 G4double a10=a5*a5;
401 G4double a12=a6*a6;
402 G4double a14=a7*a7;
403 G4double a16=a8*a8;
404 G4double a17=a16*a;
405 //G4double a20=a16*a4;
406 G4double a32=a16*a16;
407 // Reaction cross-section parameters (pel=peh_fit.f)
408 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1
409 lastPAR[1]=a/(1./4.4+1./a); // p2
410 lastPAR[2]=.22/G4Pow::GetInstance()->powA(a,.33); // p3
411 lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4
412 lastPAR[4]=3.E-4*G4Pow::GetInstance()->powA(a,.32)/(1.+14./a2); // p5
413 lastPAR[5]=0.; // p6 not used
414 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7
415 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8
416 lastPAR[8]=0.; // p9 not used
417 // @@ the differential cross-section is parameterized separately for A>6 & A<7
418 if(a<6.5)
419 {
420 G4double a28=a16*a12;
421 // The main pre-exponent (pel_sg)
422 lastPAR[ 9]=4000*a; // p1
423 lastPAR[10]=1.2e7*a8+380*a17; // p2
424 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
425 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
426 lastPAR[13]=.28*a; // p5
427 lastPAR[14]=1.2*a2+2.3; // p6
428 lastPAR[15]=3.8/a; // p7
429 // The main slope (pel_sl)
430 lastPAR[16]=.01/(1.+.0024*a5); // p1
431 lastPAR[17]=.2*a; // p2
432 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
433 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
434 // The main quadratic (pel_sh)
435 lastPAR[20]=2.25*a3; // p1
436 lastPAR[21]=18.; // p2
437 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
438 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
439 // The 1st max pre-exponent (pel_qq)
440 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
441 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
442 lastPAR[26]=.0006*a3; // p3
443 // The 1st max slope (pel_qs)
444 lastPAR[27]=10.+4.e-8*a12*a; // p1
445 lastPAR[28]=.114; // p2
446 lastPAR[29]=.003; // p3
447 lastPAR[30]=2.e-23; // p4
448 // The effective pre-exponent (pel_ss)
449 lastPAR[31]=1./(1.+.0001*a8); // p1
450 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
451 lastPAR[33]=.03; // p3
452 // The effective slope (pel_sb)
453 lastPAR[34]=a/2; // p1
454 lastPAR[35]=2.e-7*a4; // p2
455 lastPAR[36]=4.; // p3
456 lastPAR[37]=64./a3; // p4
457 // The gloria pre-exponent (pel_us)
458 lastPAR[38]=1.e8*G4Exp(.32*asa); // p1
459 lastPAR[39]=20.*G4Exp(.45*asa); // p2
460 lastPAR[40]=7.e3+2.4e6/a5; // p3
461 lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4
462 lastPAR[42]=2.5*a; // p5
463 // The gloria slope (pel_ub)
464 lastPAR[43]=920.+.03*a8*a3; // p1
465 lastPAR[44]=93.+.0023*a12; // p2
466 }
467 else
468 {
469 G4double p1a10=2.2e-28*a10;
470 G4double r4a16=6.e14/a16;
471 G4double s4a16=r4a16*r4a16;
472 // a24
473 // a36
474 // The main pre-exponent (peh_sg)
475 lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1
476 lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2
477 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
478 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
479 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
480 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
481 // The main slope (peh_sl)
482 lastPAR[15]=400./a12+2.e-22*a9; // p1
483 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
484 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
485 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
486 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
487 lastPAR[20]=9.+100./a; // p6
488 // The main quadratic (peh_sh)
489 lastPAR[21]=.002*a3+3.e7/a6; // p1
490 lastPAR[22]=7.e-15*a4*asa; // p2
491 lastPAR[23]=9000./a4; // p3
492 // The 1st max pre-exponent (peh_qq)
493 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
494 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
495 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
496 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
497 // The 1st max slope (peh_qs)
498 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
499 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2
500 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
501 lastPAR[31]=100./asa; // p4
502 // The 2nd max pre-exponent (peh_ss)
503 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
504 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
505 lastPAR[34]=1.3+3.e5/a4; // p3
506 lastPAR[35]=500./(a2+50.)+3; // p4
507 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
508 // The 2nd max slope (peh_sb)
509 lastPAR[37]=.4*asa+3.e-9*a6; // p1
510 lastPAR[38]=.0005*a5; // p2
511 lastPAR[39]=.002*a5; // p3
512 lastPAR[40]=10.; // p4
513 // The effective pre-exponent (peh_us)
514 lastPAR[41]=.05+.005*a; // p1
515 lastPAR[42]=7.e-8/sa; // p2
516 lastPAR[43]=.8*sa; // p3
517 lastPAR[44]=.02*sa; // p4
518 lastPAR[45]=1.e8/a3; // p5
519 lastPAR[46]=3.e32/(a32+1.e32); // p6
520 // The effective slope (peh_ub)
521 lastPAR[47]=24.; // p1
522 lastPAR[48]=20./sa; // p2
523 lastPAR[49]=7.e3*a/(sa+1.); // p3
524 lastPAR[50]=900.*sa/(1.+500./a3); // p4
525 }
526 // Parameter for lowEnergyNeutrons
527 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
528 }
529 lastPAR[nLast]=pwd;
530 // and initialize the zero element of the table
531 G4double lp=lPMin; // ln(momentum)
532 G4bool memCS=onlyCS; // ??
533 onlyCS=false;
534 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
535 onlyCS=memCS;
536 lastSST[0]=theSS;
537 lastS1T[0]=theS1;
538 lastB1T[0]=theB1;
539 lastS2T[0]=theS2;
540 lastB2T[0]=theB2;
541 lastS3T[0]=theS3;
542 lastB3T[0]=theB3;
543 lastS4T[0]=theS4;
544 lastB4T[0]=theB4;
545 }
546 if(LP>ILP)
547 {
548 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
549 if(ini<0) ini=0;
550 if(ini<nPoints)
551 {
552 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
553 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
554 if(fin>=ini)
555 {
556 G4double lp=0.;
557 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
558 {
559 lp=lPMin+ip*dlnP; // ln(momentum)
560 G4bool memCS=onlyCS;
561 onlyCS=false;
562 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
563 onlyCS=memCS;
564 lastSST[ip]=theSS;
565 lastS1T[ip]=theS1;
566 lastB1T[ip]=theB1;
567 lastS2T[ip]=theS2;
568 lastB2T[ip]=theB2;
569 lastS3T[ip]=theS3;
570 lastB3T[ip]=theB3;
571 lastS4T[ip]=theS4;
572 lastB4T[ip]=theB4;
573 }
574 return lp;
575 }
576 else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG
577 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
578 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
579 }
580 else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="
581 <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
582 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
583 }
584 }
585 else
586 {
587 // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
588 // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
589 // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented");
591 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
592 << ", while it is defined only for PDG=211 (pi+)" << G4endl;
593 G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
594 FatalException, ed);
595 }
596 return ILP;
597}
598
599// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
601{
602 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
603 static const G4double third=1./3.;
604 static const G4double fifth=1./5.;
605 static const G4double sevth=1./7.;
606 if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
607 if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
608 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
609 G4double q2=0.;
610 if(tgZ==1 && tgN==0) // ===> p+p=p+p
611 {
612 G4double E1=lastTM*theB1;
613 G4double R1=(1.-G4Exp(-E1));
614 G4double E2=lastTM*theB2;
615 G4double R2=(1.-G4Exp(-E2*E2*E2));
616 G4double E3=lastTM*theB3;
617 G4double R3=(1.-G4Exp(-E3));
618 G4double I1=R1*theS1/theB1;
619 G4double I2=R2*theS2;
620 G4double I3=R3*theS3;
621 G4double I12=I1+I2;
622 G4double rand=(I12+I3)*G4UniformRand();
623 if (rand<I1 )
624 {
625 G4double ran=R1*G4UniformRand();
626 if(ran>1.) ran=1.;
627 q2=-G4Log(1.-ran)/theB1;
628 }
629 else if(rand<I12)
630 {
631 G4double ran=R2*G4UniformRand();
632 if(ran>1.) ran=1.;
633 q2=-G4Log(1.-ran);
634 if(q2<0.) q2=0.;
635 q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
636 }
637 else
638 {
639 G4double ran=R3*G4UniformRand();
640 if(ran>1.) ran=1.;
641 q2=-G4Log(1.-ran)/theB3;
642 }
643 }
644 else
645 {
646 G4double a=tgZ+tgN;
647 G4double E1=lastTM*(theB1+lastTM*theSS);
648 G4double R1=(1.-G4Exp(-E1));
649 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
650 G4double tm2=lastTM*lastTM;
651 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
652 if(a>6.5)E2*=tm2; // for heavy nuclei
653 G4double R2=(1.-G4Exp(-E2));
654 G4double E3=lastTM*theB3;
655 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
656 G4double R3=(1.-G4Exp(-E3));
657 G4double E4=lastTM*theB4;
658 G4double R4=(1.-G4Exp(-E4));
659 G4double I1=R1*theS1;
660 G4double I2=R2*theS2;
661 G4double I3=R3*theS3;
662 G4double I4=R4*theS4;
663 G4double I12=I1+I2;
664 G4double I13=I12+I3;
665 G4double rand=(I13+I4)*G4UniformRand();
666 if(rand<I1)
667 {
668 G4double ran=R1*G4UniformRand();
669 if(ran>1.) ran=1.;
670 q2=-G4Log(1.-ran)/theB1;
671 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
672 }
673 else if(rand<I12)
674 {
675 G4double ran=R2*G4UniformRand();
676 if(ran>1.) ran=1.;
677 q2=-G4Log(1.-ran)/theB2;
678 if(q2<0.) q2=0.;
679 if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
680 else q2=G4Pow::GetInstance()->powA(q2,fifth);
681 }
682 else if(rand<I13)
683 {
684 G4double ran=R3*G4UniformRand();
685 if(ran>1.) ran=1.;
686 q2=-G4Log(1.-ran)/theB3;
687 if(q2<0.) q2=0.;
688 if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
689 }
690 else
691 {
692 G4double ran=R4*G4UniformRand();
693 if(ran>1.) ran=1.;
694 q2=-G4Log(1.-ran)/theB4;
695 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
696 }
697 }
698 if(q2<0.) q2=0.;
699 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
700 if(q2>lastTM)
701 {
702 q2=lastTM;
703 }
704 return q2*GeVSQ;
705}
706
707// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
708G4double G4ChipsPionPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
709{
710 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
711 if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl;
712 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
713 if(PDG != 211)
714 {
715 // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
716 // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
717 // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented");
719 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
720 << ", while it is defined only for PDG=211 (pi-)" << G4endl;
721 G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000",
722 FatalException, ed);
723 }
724 if(theB1<0.) theB1=0.;
725 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
726 return theB1/GeVSQ;
727}
728
729// Returns half max(Q2=-t) in independent units (MeV^2)
730G4double G4ChipsPionPlusElasticXS::GetHMaxT()
731{
732 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
733 return lastTM*HGeVSQ;
734}
735
736// lastLP is used, so calculating tables, one need to remember and then recover lastLP
737G4double G4ChipsPionPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
738 G4int tgN)
739{
740 if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl;
741
742 //AR-24Apr2018 Switch to allow transuranic elements
743 const G4bool isHeavyElementAllowed = true;
744 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
745 {
746 G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
747 return 0.;
748 }
749 G4int iZ=tgZ-1; // Z index
750 if(iZ<0)
751 {
752 iZ=0; // conversion of the neutron target to the proton target
753 tgZ=1;
754 tgN=0;
755 }
756 G4double p=G4Exp(lp); // momentum
757 G4double sp=std::sqrt(p); // sqrt(p)
758 G4double p2=p*p;
759 G4double p3=p2*p;
760 G4double p4=p2*p2;
761 if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
762 {
763 G4double dl2=lp-lastPAR[11];
764 theSS=lastPAR[34];
765 theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
766 (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
767 theB1=lastPAR[18]*G4Pow::GetInstance()->powA(p,lastPAR[19])/(1.+lastPAR[20]/p3);
768 theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
769 theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp);
770 theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
771 theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]);
772 theS4=0.;
773 theB4=0.;
774 // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
775 G4double dl1=lp+lastPAR[0]; // lr
776 G4double lr2=dl1*dl1; // lr2
777 G4double dl3=lp-lastPAR[3]; // ld
778 G4double dl4=lp-lastPAR[4]; // lm
779 return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
780 lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
781 }
782 else
783 {
784 G4double p5=p4*p;
785 G4double p6=p5*p;
786 G4double p8=p6*p2;
787 G4double p10=p8*p2;
788 G4double p12=p10*p2;
789 G4double p16=p8*p8;
790 //G4double p24=p16*p8;
791 G4double dl=lp-5.;
792 G4double a=tgZ+tgN;
793 G4double pah=G4Pow::GetInstance()->powA(p,a/2);
794 G4double pa=pah*pah;
795 G4double pa2=pa*pa;
796 if(a<6.5)
797 {
798 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
799 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
800 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
801 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
802 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
803 theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
804 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
805 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
806 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
807 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
808 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
809 }
810 else
811 {
812 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
813 lastPAR[13]/(p5+lastPAR[14]/p16);
814 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
815 lastPAR[17]/(1.+lastPAR[18]/p4);
816 theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
817 theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
818 theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
819 theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
820 lastPAR[33]/(1.+lastPAR[34]/p6);
821 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
822 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
823 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
824 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
825 }
826 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
827 // p1 p2 p3
828 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
829 lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
830 // p4 p5 p7 p8
831 }
832 return 0.;
833} // End of GetTableValues
834
835// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
836G4double G4ChipsPionPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
837 G4double pP)
838{
839 static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV
840 static const G4double mPi2= mPi*mPi;
841 G4double pP2=pP*pP; // squared momentum of the projectile
842 if(tgZ || tgN>-1) // ---> pipA
843 {
844 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
845 G4double dmt=mt+mt;
846 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds
847 return dmt*dmt*pP2/mds;
848 }
849 else
850 {
852 ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
853 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
854 G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
855 FatalException, ed);
856 return 0;
857 }
858}
#define G4_DECLARE_XS_FACTORY(cross_section)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
virtual void CrossSectionDescription(std::ostream &) const
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4PionPlus * PionPlus()
Definition G4PionPlus.cc:93
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition G4Pow.hh:230