Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4FissionLibrary.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// This software was developed by Lawrence Livermore National Laboratory.
28//
29// Redistribution and use in source and binary forms, with or without
30// modification, are permitted provided that the following conditions are met:
31//
32// 1. Redistributions of source code must retain the above copyright notice,
33// this list of conditions and the following disclaimer.
34// 2. Redistributions in binary form must reproduce the above copyright notice,
35// this list of conditions and the following disclaimer in the documentation
36// and/or other materials provided with the distribution.
37// 3. The name of the author may not be used to endorse or promote products
38// derived from this software without specific prior written permission.
39//
40// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
41// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
42// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
43// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
45// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
46// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
47// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
48// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
49// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50//
51// Copyright (c) 2006 The Regents of the University of California.
52// All rights reserved.
53// UCRL-CODE-224807
54//
55//
56//
57// neutron_hp -- source file
58// J.M. Verbeke, Jan-2007
59// A low energy neutron-induced fission model.
60//
61
62#include "G4FissionLibrary.hh"
64#include "G4SystemOfUnits.hh"
66
68 : G4ParticleHPFinalState(), theIsotope(0), targetMass(0.0), secID(-1)
69{
70 hasXsec = false;
71 fe=0;
72 secID = G4PhysicsModelCatalog::GetModelID( "model_G4LLNLFission" );
73}
74
77
79{
81 return theNew;
82}
83
84//void G4FissionLibrary::Init (G4double A, G4double Z, G4String & dirName, G4String &)
86{
87 G4String tString = "/FS/";
88 G4bool dbool;
89 theIsotope = static_cast<G4int>(1000*Z+A);
90 G4ParticleHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
91 G4String filename = aFile.GetName();
92
93 if(!dbool)
94 {
95 hasAnyData = false;
96 hasFSData = false;
97 hasXsec = false;
98 return;
99 }
100 //std::ifstream theData(filename, std::ios::in);
101 std::istringstream theData(std::ios::in);
103
104 // here it comes
105 G4int infoType, dataType;
106 hasFSData = false;
107 while (theData >> infoType) // Loop checking, 11.03.2015, T. Koi
108 {
109 hasFSData = true;
110 theData >> dataType;
111 switch(infoType)
112 {
113 case 1:
114 if(dataType==4) theNeutronAngularDis.Init(theData);
115 if(dataType==5) thePromptNeutronEnDis.Init(theData);
116 if(dataType==12) theFinalStatePhotons.InitMean(theData);
117 if(dataType==14) theFinalStatePhotons.InitAngular(theData);
118 if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
119 break;
120 case 2:
121 if(dataType==1) theFinalStateNeutrons.InitMean(theData);
122 break;
123 case 3:
124 if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
125 if(dataType==5) theDelayedNeutronEnDis.Init(theData);
126 break;
127 case 4:
128 if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
129 break;
130 case 5:
131 if(dataType==1) theEnergyRelease.Init(theData);
132 break;
133 default:
134 G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
135 throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
136 break;
137 }
138 }
139 targetMass = theFinalStateNeutrons.GetTargetMass();
140 //theData.close();
141}
142
144{
145
146 if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
147 theResult.Get()->Clear();
148
149 // prepare neutron
150 G4double eKinetic = theTrack.GetKineticEnergy();
151 const G4HadProjectile* incidentParticle = &theTrack;
152 G4ReactionProduct theNeutron(incidentParticle->GetDefinition() );
153 theNeutron.SetMomentum(incidentParticle->Get4Momentum().vect() );
154 theNeutron.SetKineticEnergy(eKinetic);
155
156 // prepare target
157 G4Nucleus aNucleus;
158 G4ReactionProduct theTarget;
159 G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
160 theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
161
162 // set neutron and target in the FS classes
163 //theNeutronAngularDis.SetNeutron(theNeutron);
164 theNeutronAngularDis.SetProjectileRP(theNeutron);
165 theNeutronAngularDis.SetTarget(theTarget);
166
167 // boost to target rest system
168 theNeutron.Lorentz(theNeutron, -1*theTarget);
169
170 eKinetic = theNeutron.GetKineticEnergy();
171
172 // dice neutron and gamma multiplicities, energies and momenta in Lab. @@
173 // no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
174 // also for mean, we rely on the consistency of the data. @@
175
176 G4int nPrompt=0, gPrompt=0;
177 SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
178
179 // Build neutrons and add them to dynamic particle vector
180 G4double momentum;
181 for(G4int i=0; i<nPrompt; i++)
182 {
185 it->SetKineticEnergy(fe->getNeutronEnergy(i)*MeV);
186 momentum = it->GetTotalMomentum();
187 G4ThreeVector temp(momentum*fe->getNeutronDircosu(i),
188 momentum*fe->getNeutronDircosv(i),
189 momentum*fe->getNeutronDircosw(i));
190 it->SetMomentum( temp );
191// it->SetGlobalTime(fe->getNeutronAge(i)*second);
192 theResult.Get()->AddSecondary(it, secID);
193// G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
194 }
195
196 // Build gammas, lorentz transform them, and add them to dynamic particle vector
197 for(G4int i=0; i<gPrompt; i++)
198 {
199 G4ReactionProduct * thePhoton = new G4ReactionProduct;
200 thePhoton->SetDefinition(G4Gamma::Gamma());
201 thePhoton->SetKineticEnergy(fe->getPhotonEnergy(i)*MeV);
202 momentum = thePhoton->GetTotalMomentum();
203 G4ThreeVector temp(momentum*fe->getPhotonDircosu(i),
204 momentum*fe->getPhotonDircosv(i),
205 momentum*fe->getPhotonDircosw(i));
206 thePhoton->SetMomentum( temp );
207 thePhoton->Lorentz(*thePhoton, -1.*theTarget);
208
210 it->SetDefinition(thePhoton->GetDefinition());
211 it->SetMomentum(thePhoton->GetMomentum());
212// it->SetGlobalTime(fe->getPhotonAge(i)*second);
213// G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
214 theResult.Get()->AddSecondary(it, secID);
215 delete thePhoton;
216 }
217// G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
218// G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
219// G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
220
221 // finally deal with local energy depositions.
222 G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
223 theResult.Get()->SetLocalEnergyDeposit(eDepByFragments);
224// G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
225 // clean up the primary neutron
227 return theResult.Get();
228}
229
230void G4FissionLibrary::SampleMult(const G4HadProjectile & theTrack, G4int* nPrompt,
231 G4int* gPrompt, G4double eKinetic)
232{
233 G4double promptNeutronMulti = 0;
234 promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
235 G4double delayedNeutronMulti = 0;
236 delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
237
238 G4double time = theTrack.GetGlobalTime()/second;
239 G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
240 if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
241 // no data for prompt and delayed neutrons in Geant
242 // but there is perhaps data for the total neutron multiplicity, in which case
243 // we use it for prompt neutron emission
244 if (fe != 0) delete fe;
245 fe = new G4fissionEvent(theIsotope, time, totalNeutronMulti, eKinetic);
246 } else {
247 // prompt nubar != 0 || delayed nubar != 0
248 if (fe != 0) delete fe;
249 fe = new G4fissionEvent(theIsotope, time, promptNeutronMulti, eKinetic);
250 }
251 *nPrompt = fe->getNeutronNu();
252 if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
253 *gPrompt = fe->getPhotonNu();
254 if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
255}
256
@ stopAndKill
#define M(row, col)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
Hep3Vector vect() const
value_type & Get() const
Definition G4Cache.hh:315
void Put(const value_type &val) const
Definition G4Cache.hh:321
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
G4double GetTotalMomentum() const
void SetKineticEnergy(G4double aEnergy)
G4ParticleHPFinalState * New()
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &, G4ParticleDefinition *)
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetLocalEnergyDeposit(G4double aE)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetGlobalTime() const
G4double GetTemperature() const
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition G4Nucleus.cc:119
void SetTarget(const G4ReactionProduct &aTarget)
void SetProjectileRP(const G4ReactionProduct &anIncidentParticleRP)
void Init(std::istream &aDataFile)
G4Cache< G4HadFinalState * > theResult
void Init(std::istream &aDataFile)
void GetDataStream(const G4String &, std::istringstream &iss)
static G4ParticleHPManager * GetInstance()
G4ParticleHPDataUsed GetName(G4int A, G4int Z, const G4String &base, const G4String &rest, G4bool &active)
G4double GetMean(G4double anEnergy)
void InitMean(std::istream &aDataFile)
void InitDelayed(std::istream &aDataFile)
G4double GetPrompt(G4double anEnergy)
void InitPrompt(std::istream &aDataFile)
G4double GetDelayed(G4double anEnergy)
void InitEnergies(std::istream &aDataFile)
void InitAngular(std::istream &aDataFile)
G4bool InitMean(std::istream &aDataFile)
static G4int GetModelID(const G4int modelIndex)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double getPhotonDircosu(G4int index)
G4double getNeutronEnergy(G4int index)
G4double getPhotonEnergy(G4int index)
G4double getNeutronDircosv(G4int index)
G4double getPhotonDircosw(G4int index)
G4double getNeutronDircosw(G4int index)
G4double getNeutronDircosu(G4int index)
G4double getPhotonDircosv(G4int index)