Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4CompetitiveFission.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Hadronic Process: Nuclear De-excitations
29// by V. Lara (Oct 1998)
30
31#ifndef G4CompetitiveFission_h
32#define G4CompetitiveFission_h 1
33
35#include "G4Fragment.hh"
39#include "G4Exp.hh"
40
45
47{
48public:
49
50 explicit G4CompetitiveFission();
51 ~G4CompetitiveFission() override;
52
53 G4Fragment* EmittedFragment(G4Fragment* theNucleus) override;
54
55 G4double GetEmissionProbability(G4Fragment* theNucleus) override;
56
57 void SetFissionBarrier(G4VFissionBarrier * aBarrier);
58
60
62
63 inline G4double GetFissionBarrier(void) const;
64
66
67 inline G4double GetMaximalKineticEnergy(void) const;
68
69private:
70
71 // Sample AtomicNumber of Fission products
72 G4int FissionAtomicNumber(G4int A);
73
74 G4double MassDistribution(G4double x, G4int A);
75
76 // Sample Charge of fission products
77 G4int FissionCharge(G4int A, G4int Z, G4double Af);
78
79 // Sample Kinetic energy of fission products
80 G4double FissionKineticEnergy(G4int A, G4int Z,
81 G4int Af1, G4int Zf1,
82 G4int Af2, G4int Zf2,
83 G4double U, G4double Tmax);
84
85 inline G4double Ratio(G4double A, G4double A11,
86 G4double B1, G4double A00) const;
87
88 inline G4double SymmetricRatio(G4int A, G4double A11) const;
89
90 inline G4double AsymmetricRatio(G4int A, G4double A11) const;
91
92 inline G4double LocalExp(G4double x) const;
93
95 const G4CompetitiveFission & operator=(const G4CompetitiveFission &right);
96 G4bool operator==(const G4CompetitiveFission &right) const;
97 G4bool operator!=(const G4CompetitiveFission &right) const;
98
99 // Maximal Kinetic Energy that can be carried by fragment
100 G4double maxKineticEnergy;
101 G4double fissionBarrier;
102 G4double fissionProbability;
103
104 // For Fission barrier
105 G4VFissionBarrier* theFissionBarrierPtr;
106
107 // For Fission probability emission
108 G4VEmissionProbability* theFissionProbabilityPtr;
109
110 // For Level Density calculation
111 G4VLevelDensityParameter* theLevelDensityPtr;
112 G4PairingCorrection* pairingCorrection;
113
114 G4bool myOwnFissionProbability;
115 G4bool myOwnFissionBarrier;
116 G4bool myOwnLevelDensity;
117
118 G4FissionParameters theParam;
119
120 G4int theSecID; // Creator model ID for the secondaries created by this model
121};
122
124{
125 return fissionBarrier;
126}
127
129{
130 return maxKineticEnergy;
131}
132
133inline
134G4double G4CompetitiveFission::Ratio(G4double A, G4double A11,
135 G4double B1, G4double A00) const
136{
137 G4double res;
138 if (A11 >= A*0.5 && A11 <= (A00+10.0)) {
139 G4double x = (A11-A00)/A;
140 res = 1.0 - B1*x*x;
141 } else {
142 G4double x = 10.0/A;
143 res = 1.0 - B1*x*x - 2.0*x*B1*(A11-A00-10.0)/A;
144 }
145 return res;
146}
147
148inline
149G4double G4CompetitiveFission::AsymmetricRatio(G4int A, G4double A11) const
150{
151 return Ratio(G4double(A),A11,23.5,134.0);
152}
153
154inline
155G4double G4CompetitiveFission::SymmetricRatio(G4int A, G4double A11) const
156{
157 G4double A0 = G4double(A);
158 return Ratio(A0,A11,5.32,A0*0.5);
159}
160
161inline G4double G4CompetitiveFission::LocalExp(G4double x) const
162{
163 return (std::abs(x) < 8.) ? G4Exp(-0.5*x*x) : 0.0;
164}
165
166#endif
167
168
#define A00
#define A11
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
void SetEmissionStrategy(G4VEmissionProbability *aFissionProb)
void SetLevelDensityParameter(G4VLevelDensityParameter *aLevelDensity)
G4double GetFissionBarrier(void) const
G4double GetEmissionProbability(G4Fragment *theNucleus) override
G4double GetMaximalKineticEnergy(void) const
G4double GetLevelDensityParameter(void) const
void SetFissionBarrier(G4VFissionBarrier *aBarrier)
G4Fragment * EmittedFragment(G4Fragment *theNucleus) override