Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TwistTrapAlphaSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TwistTrapAlphaSide implementation
27//
28// Author: 18/03/2005 - O.Link ([email protected])
29// --------------------------------------------------------------------
30
31#include <cmath>
32
36
37//=====================================================================
38//* constructors ------------------------------------------------------
39
42 G4double PhiTwist, // twist angle
43 G4double pDz, // half z lenght
44 G4double pTheta, // direction between end planes
45 G4double pPhi, // by polar and azimutal angles
46 G4double pDy1, // half y length at -pDz
47 G4double pDx1, // half x length at -pDz,-pDy
48 G4double pDx2, // half x length at -pDz,+pDy
49 G4double pDy2, // half y length at +pDz
50 G4double pDx3, // half x length at +pDz,-pDy
51 G4double pDx4, // half x length at +pDz,+pDy
52 G4double pAlph, // tilt angle at +pDz
53 G4double AngleSide // parity
54 )
55 : G4VTwistSurface(name)
56{
57 fAxis[0] = kYAxis; // in local coordinate system
58 fAxis[1] = kZAxis;
59 fAxisMin[0] = -kInfinity ; // Y Axis boundary
60 fAxisMax[0] = kInfinity ; // depends on z !!
61 fAxisMin[1] = -pDz ; // Z Axis boundary
62 fAxisMax[1] = pDz ;
63
64 fDx1 = pDx1 ;
65 fDx2 = pDx2 ;
66 fDx3 = pDx3 ;
67 fDx4 = pDx4 ;
68
69 fDy1 = pDy1 ;
70 fDy2 = pDy2 ;
71
72 fDz = pDz ;
73
74 fAlph = pAlph ;
75 fTAlph = std::tan(fAlph) ;
76
77 fTheta = pTheta ;
78 fPhi = pPhi ;
79
80 // precalculate frequently used parameters
81 fDx4plus2 = fDx4 + fDx2 ;
82 fDx4minus2 = fDx4 - fDx2 ;
83 fDx3plus1 = fDx3 + fDx1 ;
84 fDx3minus1 = fDx3 - fDx1 ;
85 fDy2plus1 = fDy2 + fDy1 ;
86 fDy2minus1 = fDy2 - fDy1 ;
87
88 fa1md1 = 2*fDx2 - 2*fDx1 ;
89 fa2md2 = 2*fDx4 - 2*fDx3 ;
90
91 fPhiTwist = PhiTwist ; // dphi
92 fAngleSide = AngleSide ; // 0,90,180,270 deg
93
94 fdeltaX = 2 * fDz * std::tan(fTheta) * std::cos(fPhi);
95 // dx in surface equation
96 fdeltaY = 2 * fDz * std::tan(fTheta) * std::sin(fPhi);
97 // dy in surface equation
98
99 fRot.rotateZ( AngleSide ) ;
100
101 fTrans.set(0, 0, 0); // No Translation
102 fIsValidNorm = false;
103
104 SetCorners() ;
105 SetBoundaries() ;
106}
107
108
109//=====================================================================
110//* Fake default constructor ------------------------------------------
111
113 : G4VTwistSurface(a), fTheta(0.), fPhi(0.), fDy1(0.), fDx1(0.), fDx2(0.),
114 fDy2(0.), fDx3(0.), fDx4(0.), fDz(0.), fAlph(0.), fTAlph(0.), fPhiTwist(0.),
115 fAngleSide(0.), fDx4plus2(0.), fDx4minus2(0.), fDx3plus1(0.), fDx3minus1(0.),
116 fDy2plus1(0.), fDy2minus1(0.), fa1md1(0.), fa2md2(0.), fdeltaX(0.),
117 fdeltaY(0.)
118{
119}
120
121
122//=====================================================================
123//* destructor --------------------------------------------------------
124
126{
127}
128
129
130//=====================================================================
131//* GetNormal ---------------------------------------------------------
132
135 G4bool isGlobal)
136{
137 // GetNormal returns a normal vector at a surface (or very close
138 // to surface) point at tmpxx.
139 // If isGlobal=true, it returns the normal in global coordinate.
140 //
141
142 G4ThreeVector xx;
143 if (isGlobal)
144 {
145 xx = ComputeLocalPoint(tmpxx);
146 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance)
147 {
149 }
150 }
151 else
152 {
153 xx = tmpxx;
154 if (xx == fCurrentNormal.p)
155 {
156 return fCurrentNormal.normal;
157 }
158 }
159
160 G4double phi ;
161 G4double u ;
162
163 GetPhiUAtX(xx,phi,u) ; // phi,u for point xx close to surface
164
165 G4ThreeVector normal = NormAng(phi,u) ; // the normal vector at phi,u
166
167#ifdef G4TWISTDEBUG
168 G4cout << "normal vector = " << normal << G4endl ;
169 G4cout << "phi = " << phi << " , u = " << u << G4endl ;
170#endif
171
172 if (isGlobal)
173 {
175 }
176 else
177 {
178 fCurrentNormal.normal = normal.unit();
179 }
180
181 return fCurrentNormal.normal;
182}
183
184//=====================================================================
185//* DistanceToSurface -------------------------------------------------
186
187G4int
189 const G4ThreeVector& gv,
190 G4ThreeVector gxx[],
191 G4double distance[],
192 G4int areacode[],
193 G4bool isvalid[],
194 EValidate validate)
195{
196 static const G4double pihalf = pi/2 ;
197 const G4double ctol = 0.5 * kCarTolerance;
198
199 G4bool IsParallel = false ;
200 G4bool IsConverged = false ;
201
202 G4int nxx = 0 ; // number of physical solutions
203
204 fCurStatWithV.ResetfDone(validate, &gp, &gv);
205
206 if (fCurStatWithV.IsDone())
207 {
208 for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i)
209 {
210 gxx[i] = fCurStatWithV.GetXX(i);
211 distance[i] = fCurStatWithV.GetDistance(i);
212 areacode[i] = fCurStatWithV.GetAreacode(i);
213 isvalid[i] = fCurStatWithV.IsValid(i);
214 }
215 return fCurStatWithV.GetNXX();
216 }
217 else // initialise
218 {
219 for (G4int j=0; j<G4VSURFACENXX ; ++j)
220 {
221 distance[j] = kInfinity;
222 areacode[j] = sOutside;
223 isvalid[j] = false;
224 gxx[j].set(kInfinity, kInfinity, kInfinity);
225 }
226 }
227
230
231#ifdef G4TWISTDEBUG
232 G4cout << "Local point p = " << p << G4endl ;
233 G4cout << "Local direction v = " << v << G4endl ;
234#endif
235
236 G4double phi,u ; // parameters
237
238 // temporary variables
239
240 G4double tmpdist = kInfinity ;
241 G4ThreeVector tmpxx;
242 G4int tmpareacode = sOutside ;
243 G4bool tmpisvalid = false ;
244
245 std::vector<Intersection> xbuf ;
246 Intersection xbuftmp ;
247
248 // prepare some variables for the intersection finder
249
250 G4double L = 2*fDz ;
251
252 G4double phixz = fPhiTwist * ( p.x() * v.z() - p.z() * v.x() ) ;
253 G4double phiyz = fPhiTwist * ( p.y() * v.z() - p.z() * v.y() ) ;
254
255
256 // special case vz = 0
257
258 if ( v.z() == 0. )
259 {
260 if ( std::fabs(p.z()) <= L ) // intersection possible in z
261 {
262 phi = p.z() * fPhiTwist / L ; // phi is determined by the z-position
263 u = (fDy1*(4*(-(fdeltaY*phi*v.x()) + fPhiTwist*p.y()*v.x()
264 + fdeltaX*phi*v.y() - fPhiTwist*p.x()*v.y())
265 + ((fDx3plus1 + fDx4plus2)*fPhiTwist
266 + 2*(fDx3minus1 + fDx4minus2)*phi)
267 *(v.y()*std::cos(phi) - v.x()*std::sin(phi))))
268 /(fPhiTwist*(4*fDy1* v.x() - (fa1md1 + 4*fDy1*fTAlph)*v.y())
269 *std::cos(phi) + fPhiTwist*(fa1md1*v.x()
270 + 4*fDy1*(fTAlph*v.x() + v.y()))*std::sin(phi));
271 xbuftmp.phi = phi ;
272 xbuftmp.u = u ;
273 xbuftmp.areacode = sOutside ;
274 xbuftmp.distance = kInfinity ;
275 xbuftmp.isvalid = false ;
276
277 xbuf.push_back(xbuftmp) ; // store it to xbuf
278 }
279 else // no intersection possible
280 {
281 distance[0] = kInfinity;
282 gxx[0].set(kInfinity,kInfinity,kInfinity);
283 isvalid[0] = false ;
284 areacode[0] = sOutside ;
285 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0],
286 areacode[0], isvalid[0],
287 0, validate, &gp, &gv);
288 return 0;
289 } // end std::fabs(p.z() <= L
290 } // end v.z() == 0
291 else // general solution for non-zero vz
292 {
293
294 G4double c[8],srd[7],si[7] ;
295
296 c[7] = 57600*
297 fDy1*(fa1md1*phiyz +
298 fDy1*(-4*phixz + 4*fTAlph*phiyz
299 + (fDx3plus1 + fDx4plus2)*fPhiTwist*v.z())) ;
300 c[6] = -57600*
301 fDy1*(4*fDy1*(phiyz + 2*fDz*v.x() + fTAlph*(phixz - 2*fDz*v.y()))
302 - 2*fDy1*(2*fdeltaX + fDx3minus1 + fDx4minus2
303 - 2*fdeltaY*fTAlph)*v.z()
304 + fa1md1*(phixz - 2*fDz*v.y() + fdeltaY*v.z()));
305 c[5] = 4800*
306 fDy1*(fa1md1*(-5*phiyz - 24*fDz*v.x() + 12*fdeltaX*v.z()) +
307 fDy1*(20*phixz - 4*(5*fTAlph*phiyz + 24*fDz*fTAlph*v.x()
308 + 24*fDz*v.y()) + (48*fdeltaY + (fDx3plus1 + fDx4plus2)
309 *fPhiTwist + 48*fdeltaX*fTAlph)*v.z()));
310 c[4] = 4800*
311 fDy1*(fa1md1*(phixz - 10*fDz*v.y() + 5*fdeltaY*v.z())
312 + 2*fDy1*(2*phiyz + 20*fDz*v.x()
313 + (-10*fdeltaX + fDx3minus1 + fDx4minus2)*v.z()
314 + 2*fTAlph*(phixz - 10*fDz*v.y() + 5*fdeltaY*v.z())));
315 c[3] = -96*
316 fDy1*(-(fa1md1*(phiyz + 100*fDz*v.x() - 50*fdeltaX*v.z()))
317 + fDy1*(4*phixz - 400*fDz*v.y()
318 + (200*fdeltaY - (fDx3plus1 + fDx4plus2)*fPhiTwist)*v.z()
319 - 4*fTAlph*(phiyz + 100*fDz*v.x() - 50*fdeltaX*v.z())));
320 c[2] = 32*
321 fDy1*(4*fDy1*(7*fTAlph*phixz + 7*phiyz - 6*fDz*v.x() + 6*fDz*fTAlph*v.y())
322 + 6*fDy1*(2*fdeltaX+fDx3minus1+fDx4minus2-2*fdeltaY*fTAlph)*v.z()
323 + fa1md1*(7*phixz + 6*fDz*v.y() - 3*fdeltaY*v.z()));
324 c[1] = -8*
325 fDy1*(fa1md1*(-9*phiyz - 56*fDz*v.x() + 28*fdeltaX*v.z())
326 + 4*fDy1*(9*phixz - 9*fTAlph*phiyz - 56*fDz*fTAlph*v.x()
327 - 56*fDz*v.y() + 28*(fdeltaY + fdeltaX*fTAlph)*v.z()));
328 c[0] = 72*
329 fDy1*(fa1md1*(2*fDz*v.y() - fdeltaY*v.z())
330 + fDy1*(-8*fDz*v.x() + 8*fDz*fTAlph*v.y()
331 + 4*fdeltaX*v.z() - 4*fdeltaY*fTAlph*v.z()));
332
333#ifdef G4TWISTDEBUG
334 G4cout << "coef = " << c[0] << " "
335 << c[1] << " "
336 << c[2] << " "
337 << c[3] << " "
338 << c[4] << " "
339 << c[5] << " "
340 << c[6] << " "
341 << c[7] << G4endl ;
342#endif
343
344 G4JTPolynomialSolver trapEq ;
345 G4int num = trapEq.FindRoots(c,7,srd,si);
346
347 for (G4int i = 0 ; i<num ; i++ ) // loop over all math solutions
348 {
349 if ( si[i]==0.0 ) // only real solutions
350 {
351#ifdef G4TWISTDEBUG
352 G4cout << "Solution " << i << " : " << srd[i] << G4endl ;
353#endif
354 phi = std::fmod(srd[i] , pihalf) ;
355 u = (fDy1*(4*(phiyz + 2*fDz*phi*v.y() - fdeltaY*phi*v.z())
356 - ((fDx3plus1 + fDx4plus2)*fPhiTwist
357 + 2*(fDx3minus1 + fDx4minus2)*phi)*v.z()*std::sin(phi)))
358 /(fPhiTwist*v.z()*(4*fDy1*std::cos(phi)
359 + (fa1md1 + 4*fDy1*fTAlph)*std::sin(phi)));
360 xbuftmp.phi = phi ;
361 xbuftmp.u = u ;
362 xbuftmp.areacode = sOutside ;
363 xbuftmp.distance = kInfinity ;
364 xbuftmp.isvalid = false ;
365
366 xbuf.push_back(xbuftmp) ; // store it to xbuf
367
368#ifdef G4TWISTDEBUG
369 G4cout << "solution " << i << " = " << phi << " , " << u << G4endl ;
370#endif
371 } // end if real solution
372 } // end loop i
373 } // end general case
374
375 nxx = (G4int)xbuf.size() ; // save the number of solutions
376
377 G4ThreeVector xxonsurface ; // point on surface
378 G4ThreeVector surfacenormal ; // normal vector
379 G4double deltaX; // distance between intersection point and point on surface
380 G4double theta; // angle between track and surfacenormal
381 G4double factor; // a scaling factor
382 G4int maxint=30; // number of iterations
383
384 for ( std::size_t k = 0 ; k<xbuf.size() ; ++k )
385 {
386#ifdef G4TWISTDEBUG
387 G4cout << "Solution " << k << " : "
388 << "reconstructed phiR = " << xbuf[k].phi
389 << ", uR = " << xbuf[k].u << G4endl ;
390#endif
391
392 phi = xbuf[k].phi ; // get the stored values for phi and u
393 u = xbuf[k].u ;
394
395 IsConverged = false ; // no convergence at the beginning
396
397 for ( G4int i = 1 ; i<maxint ; ++i )
398 {
399 xxonsurface = SurfacePoint(phi,u) ;
400 surfacenormal = NormAng(phi,u) ;
401
402 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx);
403 deltaX = ( tmpxx - xxonsurface ).mag() ;
404 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ;
405 if ( theta < 0.001 )
406 {
407 factor = 50 ;
408 IsParallel = true ;
409 }
410 else
411 {
412 factor = 1 ;
413 }
414
415#ifdef G4TWISTDEBUG
416 G4cout << "Step i = " << i << ", distance = " << tmpdist
417 << ", " << deltaX << G4endl ;
418 G4cout << "X = " << tmpxx << G4endl ;
419#endif
420
421 GetPhiUAtX(tmpxx, phi, u) ;
422 // the new point xx is accepted and phi/u replaced
423
424#ifdef G4TWISTDEBUG
425 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ;
426#endif
427
428 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
429
430 } // end iterative loop (i)
431
432 if ( std::fabs(tmpdist)<ctol ) { tmpdist = 0 ; }
433
434#ifdef G4TWISTDEBUG
435 G4cout << "refined solution " << phi << " , " << u << G4endl ;
436 G4cout << "distance = " << tmpdist << G4endl ;
437 G4cout << "local X = " << tmpxx << G4endl ;
438#endif
439
440 tmpisvalid = false ; // init
441
442 if ( IsConverged )
443 {
444 if (validate == kValidateWithTol)
445 {
446 tmpareacode = GetAreaCode(tmpxx);
447 if (!IsOutside(tmpareacode))
448 {
449 if (tmpdist >= 0) tmpisvalid = true;
450 }
451 }
452 else if (validate == kValidateWithoutTol)
453 {
454 tmpareacode = GetAreaCode(tmpxx, false);
455 if (IsInside(tmpareacode))
456 {
457 if (tmpdist >= 0) { tmpisvalid = true; }
458 }
459 }
460 else // kDontValidate
461 {
462 G4Exception("G4TwistTrapAlphaSide::DistanceToSurface()",
463 "GeomSolids0001", FatalException,
464 "Feature NOT implemented !");
465 }
466 }
467 else
468 {
469 tmpdist = kInfinity; // no convergence after 10 steps
470 tmpisvalid = false ; // solution is not vaild
471 }
472
473 // store the found values
474 //
475 xbuf[k].xx = tmpxx ;
476 xbuf[k].distance = tmpdist ;
477 xbuf[k].areacode = tmpareacode ;
478 xbuf[k].isvalid = tmpisvalid ;
479
480 } // end loop over physical solutions (variable k)
481
482 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting
483
484#ifdef G4TWISTDEBUG
485 G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
486 G4cout << G4endl << G4endl ;
487#endif
488
489 // erase identical intersection (within kCarTolerance)
490 //
491 xbuf.erase( std::unique(xbuf.begin(), xbuf.end() , EqualIntersection ),
492 xbuf.end() );
493
494
495 // add guesses
496 //
497 G4int nxxtmp = (G4int)xbuf.size() ;
498
499 if ( nxxtmp<2 || IsParallel ) // positive end
500 {
501
502#ifdef G4TWISTDEBUG
503 G4cout << "add guess at +z/2 .. " << G4endl ;
504#endif
505
506 phi = fPhiTwist/2 ;
507 u = 0 ;
508
509 xbuftmp.phi = phi ;
510 xbuftmp.u = u ;
511 xbuftmp.areacode = sOutside ;
512 xbuftmp.distance = kInfinity ;
513 xbuftmp.isvalid = false ;
514
515 xbuf.push_back(xbuftmp) ; // store it to xbuf
516
517#ifdef G4TWISTDEBUG
518 G4cout << "add guess at -z/2 .. " << G4endl ;
519#endif
520
521 phi = -fPhiTwist/2 ;
522 u = 0 ;
523
524 xbuftmp.phi = phi ;
525 xbuftmp.u = u ;
526 xbuftmp.areacode = sOutside ;
527 xbuftmp.distance = kInfinity ;
528 xbuftmp.isvalid = false ;
529
530 xbuf.push_back(xbuftmp) ; // store it to xbuf
531
532 for ( std::size_t k = nxxtmp ; k<xbuf.size() ; ++k )
533 {
534
535#ifdef G4TWISTDEBUG
536 G4cout << "Solution " << k << " : "
537 << "reconstructed phiR = " << xbuf[k].phi
538 << ", uR = " << xbuf[k].u << G4endl ;
539#endif
540
541 phi = xbuf[k].phi ; // get the stored values for phi and u
542 u = xbuf[k].u ;
543
544 IsConverged = false ; // no convergence at the beginning
545
546 for ( G4int i = 1 ; i<maxint ; ++i )
547 {
548 xxonsurface = SurfacePoint(phi,u) ;
549 surfacenormal = NormAng(phi,u) ;
550 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx);
551 deltaX = ( tmpxx - xxonsurface ).mag();
552 theta = std::fabs(std::acos(v*surfacenormal) - pihalf);
553 if ( theta < 0.001 )
554 {
555 factor = 50 ;
556 }
557 else
558 {
559 factor = 1 ;
560 }
561
562#ifdef G4TWISTDEBUG
563 G4cout << "Step i = " << i << ", distance = " << tmpdist
564 << ", " << deltaX << G4endl
565 << "X = " << tmpxx << G4endl ;
566#endif
567
568 GetPhiUAtX(tmpxx, phi, u) ;
569 // the new point xx is accepted and phi/u replaced
570
571#ifdef G4TWISTDEBUG
572 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ;
573#endif
574
575 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
576
577 } // end iterative loop (i)
578
579 if ( std::fabs(tmpdist)<ctol ) { tmpdist = 0; }
580
581#ifdef G4TWISTDEBUG
582 G4cout << "refined solution " << phi << " , " << u << G4endl ;
583 G4cout << "distance = " << tmpdist << G4endl ;
584 G4cout << "local X = " << tmpxx << G4endl ;
585#endif
586
587 tmpisvalid = false ; // init
588
589 if ( IsConverged )
590 {
591 if (validate == kValidateWithTol)
592 {
593 tmpareacode = GetAreaCode(tmpxx);
594 if (!IsOutside(tmpareacode))
595 {
596 if (tmpdist >= 0) { tmpisvalid = true; }
597 }
598 }
599 else if (validate == kValidateWithoutTol)
600 {
601 tmpareacode = GetAreaCode(tmpxx, false);
602 if (IsInside(tmpareacode))
603 {
604 if (tmpdist >= 0) { tmpisvalid = true; }
605 }
606 }
607 else // kDontValidate
608 {
609 G4Exception("G4TwistedBoxSide::DistanceToSurface()",
610 "GeomSolids0001", FatalException,
611 "Feature NOT implemented !");
612 }
613 }
614 else
615 {
616 tmpdist = kInfinity; // no convergence after 10 steps
617 tmpisvalid = false ; // solution is not vaild
618 }
619
620 // store the found values
621 //
622 xbuf[k].xx = tmpxx ;
623 xbuf[k].distance = tmpdist ;
624 xbuf[k].areacode = tmpareacode ;
625 xbuf[k].isvalid = tmpisvalid ;
626
627 } // end loop over physical solutions
628 } // end less than 2 solutions
629
630 // sort again
631 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting
632
633 // erase identical intersection (within kCarTolerance)
634 xbuf.erase( std::unique(xbuf.begin(), xbuf.end() , EqualIntersection ) ,
635 xbuf.end() );
636
637#ifdef G4TWISTDEBUG
638 G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
639 G4cout << G4endl << G4endl ;
640#endif
641
642 nxx = (G4int)xbuf.size() ; // determine number of solutions again.
643
644 for ( G4int i = 0 ; i<(G4int)xbuf.size() ; ++i )
645 {
646 distance[i] = xbuf[i].distance;
647 gxx[i] = ComputeGlobalPoint(xbuf[i].xx);
648 areacode[i] = xbuf[i].areacode ;
649 isvalid[i] = xbuf[i].isvalid ;
650
651 fCurStatWithV.SetCurrentStatus(i, gxx[i], distance[i], areacode[i],
652 isvalid[i], nxx, validate, &gp, &gv);
653#ifdef G4TWISTDEBUG
654 G4cout << "element Nr. " << i
655 << ", local Intersection = " << xbuf[i].xx
656 << ", distance = " << xbuf[i].distance
657 << ", u = " << xbuf[i].u
658 << ", phi = " << xbuf[i].phi
659 << ", isvalid = " << xbuf[i].isvalid
660 << G4endl ;
661#endif
662
663 } // end for( i ) loop
664
665#ifdef G4TWISTDEBUG
666 G4cout << "G4TwistTrapAlphaSide finished " << G4endl ;
667 G4cout << nxx << " possible physical solutions found" << G4endl ;
668 for ( G4int k= 0 ; k< nxx ; k++ )
669 {
670 G4cout << "global intersection Point found: " << gxx[k] << G4endl ;
671 G4cout << "distance = " << distance[k] << G4endl ;
672 G4cout << "isvalid = " << isvalid[k] << G4endl ;
673 }
674#endif
675
676 return nxx ;
677}
678
679
680//=====================================================================
681//* DistanceToSurface -------------------------------------------------
682
683G4int
685 G4ThreeVector gxx[],
686 G4double distance[],
687 G4int areacode[])
688{
689 const G4double ctol = 0.5 * kCarTolerance;
690
692
693 if (fCurStat.IsDone())
694 {
695 for (G4int i=0; i<fCurStat.GetNXX(); ++i)
696 {
697 gxx[i] = fCurStat.GetXX(i);
698 distance[i] = fCurStat.GetDistance(i);
699 areacode[i] = fCurStat.GetAreacode(i);
700 }
701 return fCurStat.GetNXX();
702 }
703 else // initialize
704 {
705 for (G4int i=0; i<G4VSURFACENXX; ++i)
706 {
707 distance[i] = kInfinity;
708 areacode[i] = sOutside;
709 gxx[i].set(kInfinity, kInfinity, kInfinity);
710 }
711 }
712
714 G4ThreeVector xx; // intersection point
715 G4ThreeVector xxonsurface ; // interpolated intersection point
716
717 // the surfacenormal at that surface point
718 //
719 G4double phiR = 0 ;
720 G4double uR = 0 ;
721
722 G4ThreeVector surfacenormal ;
723 G4double deltaX, uMax ;
724 G4double halfphi = 0.5*fPhiTwist ;
725
726 for ( G4int i = 1 ; i<20 ; ++i )
727 {
728 xxonsurface = SurfacePoint(phiR,uR) ;
729 surfacenormal = NormAng(phiR,uR) ;
730 distance[0] = DistanceToPlane(p,xxonsurface,surfacenormal,xx); // new XX
731 deltaX = ( xx - xxonsurface ).mag() ;
732
733#ifdef G4TWISTDEBUG
734 G4cout << "i = " << i << ", distance = " << distance[0]
735 << ", " << deltaX << G4endl
736 << "X = " << xx << G4endl ;
737#endif
738
739 // the new point xx is accepted and phi/psi replaced
740 //
741 GetPhiUAtX(xx, phiR, uR) ;
742
743 if ( deltaX <= ctol ) { break ; }
744 }
745
746 // check validity of solution ( valid phi,psi )
747
748 uMax = GetBoundaryMax(phiR) ;
749
750 if ( phiR > halfphi ) { phiR = halfphi ; }
751 if ( phiR < -halfphi ) { phiR = -halfphi ; }
752 if ( uR > uMax ) { uR = uMax ; }
753 if ( uR < -uMax ) { uR = -uMax ; }
754
755 xxonsurface = SurfacePoint(phiR,uR) ;
756 distance[0] = ( p - xx ).mag() ;
757 if ( distance[0] <= ctol ) { distance[0] = 0 ; }
758
759 // end of validity
760
761#ifdef G4TWISTDEBUG
762 G4cout << "refined solution " << phiR << " , " << uR << " , " << G4endl ;
763 G4cout << "distance = " << distance[0] << G4endl ;
764 G4cout << "X = " << xx << G4endl ;
765#endif
766
767 G4bool isvalid = true;
768 gxx[0] = ComputeGlobalPoint(xx);
769
770#ifdef G4TWISTDEBUG
771 G4cout << "intersection Point found: " << gxx[0] << G4endl ;
772 G4cout << "distance = " << distance[0] << G4endl ;
773#endif
774
775 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
776 isvalid, 1, kDontValidate, &gp);
777 return 1;
778}
779
780
781//=====================================================================
782//* GetAreaCode -------------------------------------------------------
783
784G4int
785G4TwistTrapAlphaSide::GetAreaCode(const G4ThreeVector& xx, G4bool withTol)
786{
787 // We must use the function in local coordinate system.
788 // See the description of DistanceToSurface(p,v).
789
790 const G4double ctol = 0.5 * kCarTolerance;
791
792 G4double phi ;
793 G4double yprime ;
794 GetPhiUAtX(xx, phi,yprime ) ;
795
796 G4double fYAxisMax = GetBoundaryMax(phi) ;
797 G4double fYAxisMin = GetBoundaryMin(phi) ;
798
799#ifdef G4TWISTDEBUG
800 G4cout << "GetAreaCode: phi = " << phi << G4endl ;
801 G4cout << "GetAreaCode: yprime = " << yprime << G4endl ;
802 G4cout << "Intervall is " << fYAxisMin << " to " << fYAxisMax << G4endl ;
803#endif
804
805 G4int areacode = sInside;
806
807 if (fAxis[0] == kYAxis && fAxis[1] == kZAxis)
808 {
809 G4int zaxis = 1;
810
811 if (withTol)
812 {
813 G4bool isoutside = false;
814
815 // test boundary of yaxis
816
817 if (yprime < fYAxisMin + ctol)
818 {
819 areacode |= (sAxis0 & (sAxisY | sAxisMin)) | sBoundary;
820 if (yprime <= fYAxisMin - ctol) { isoutside = true; }
821
822 }
823 else if (yprime > fYAxisMax - ctol)
824 {
825 areacode |= (sAxis0 & (sAxisY | sAxisMax)) | sBoundary;
826 if (yprime >= fYAxisMax + ctol) { isoutside = true; }
827 }
828
829 // test boundary of z-axis
830
831 if (xx.z() < fAxisMin[zaxis] + ctol)
832 {
833 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
834
835 if (areacode & sBoundary) // xx is on the corner
836 { areacode |= sCorner; }
837
838 else
839 { areacode |= sBoundary; }
840 if (xx.z() <= fAxisMin[zaxis] - ctol) { isoutside = true; }
841 }
842 else if (xx.z() > fAxisMax[zaxis] - ctol)
843 {
844 areacode |= (sAxis1 & (sAxisZ | sAxisMax));
845
846 if (areacode & sBoundary) // xx is on the corner
847 { areacode |= sCorner; }
848 else
849 { areacode |= sBoundary; }
850 if (xx.z() >= fAxisMax[zaxis] + ctol) { isoutside = true; }
851 }
852
853 // if isoutside = true, clear inside bit.
854 // if not on boundary, add axis information.
855
856 if (isoutside)
857 {
858 G4int tmpareacode = areacode & (~sInside);
859 areacode = tmpareacode;
860 }
861 else if ((areacode & sBoundary) != sBoundary)
862 {
863 areacode |= (sAxis0 & sAxisY) | (sAxis1 & sAxisZ);
864 }
865
866 }
867 else
868 {
869 // boundary of y-axis
870
871 if (yprime < fYAxisMin )
872 {
873 areacode |= (sAxis0 & (sAxisY | sAxisMin)) | sBoundary;
874 }
875 else if (yprime > fYAxisMax)
876 {
877 areacode |= (sAxis0 & (sAxisY | sAxisMax)) | sBoundary;
878 }
879
880 // boundary of z-axis
881
882 if (xx.z() < fAxisMin[zaxis])
883 {
884 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
885 if (areacode & sBoundary) // xx is on the corner
886 { areacode |= sCorner; }
887 else
888 { areacode |= sBoundary; }
889 }
890 else if (xx.z() > fAxisMax[zaxis])
891 {
892 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) ;
893 if (areacode & sBoundary) // xx is on the corner
894 { areacode |= sCorner; }
895 else
896 { areacode |= sBoundary; }
897 }
898
899 if ((areacode & sBoundary) != sBoundary)
900 {
901 areacode |= (sAxis0 & sAxisY) | (sAxis1 & sAxisZ);
902 }
903 }
904 return areacode;
905 }
906 else
907 {
908 G4Exception("G4TwistTrapAlphaSide::GetAreaCode()",
909 "GeomSolids0001", FatalException,
910 "Feature NOT implemented !");
911 }
912 return areacode;
913}
914
915//=====================================================================
916//* SetCorners() ------------------------------------------------------
917
918void G4TwistTrapAlphaSide::SetCorners()
919{
920
921 // Set Corner points in local coodinate.
922
923 if (fAxis[0] == kYAxis && fAxis[1] == kZAxis)
924 {
925
926 G4double x, y, z;
927
928 // corner of Axis0min and Axis1min
929 //
930 x = -fdeltaX/2. + (fDx1 - fDy1*fTAlph)*std::cos(fPhiTwist/2.)
931 - fDy1*std::sin(fPhiTwist/2.);
932 y = -fdeltaY/2. - fDy1*std::cos(fPhiTwist/2.)
933 + (-fDx1 + fDy1*fTAlph)*std::sin(fPhiTwist/2.);
934 z = -fDz ;
935
936 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
937
938 SetCorner(sC0Min1Min, x, y, z);
939
940 // corner of Axis0max and Axis1min
941 //
942 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.)
943 + fDy1*std::sin(fPhiTwist/2.);
944 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.)
945 - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwist/2.);
946 z = -fDz ;
947
948 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
949
950 SetCorner(sC0Max1Min, x, y, z);
951
952 // corner of Axis0max and Axis1max
953 //
954 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.)
955 - fDy2*std::sin(fPhiTwist/2.);
956 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.)
957 + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.);
958 z = fDz ;
959
960 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
961
962 SetCorner(sC0Max1Max, x, y, z);
963
964 // corner of Axis0min and Axis1max
965 x = fdeltaX/2. + (fDx3 - fDy2*fTAlph)*std::cos(fPhiTwist/2.)
966 + fDy2*std::sin(fPhiTwist/2.) ;
967 y = fdeltaY/2. - fDy2*std::cos(fPhiTwist/2.)
968 + (fDx3 - fDy2*fTAlph)*std::sin(fPhiTwist/2.) ;
969 z = fDz ;
970
971 // G4cout << "SetCorners: " << x << ", " << y << ", " << z << G4endl ;
972
973 SetCorner(sC0Min1Max, x, y, z);
974
975 }
976 else
977 {
978 G4Exception("G4TwistTrapAlphaSide::SetCorners()",
979 "GeomSolids0001", FatalException,
980 "Method NOT implemented !");
981 }
982}
983
984//=====================================================================
985//* SetBoundaries() ---------------------------------------------------
986
987void G4TwistTrapAlphaSide::SetBoundaries()
988{
989 // Set direction-unit vector of boundary-lines in local coodinate.
990 //
991
992 G4ThreeVector direction;
993
994 if (fAxis[0] == kYAxis && fAxis[1] == kZAxis)
995 {
996 // sAxis0 & sAxisMin
998 direction = direction.unit();
999 SetBoundary(sAxis0 & (sAxisY | sAxisMin), direction,
1001
1002 // sAxis0 & sAxisMax
1003 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Max1Min);
1004 direction = direction.unit();
1005 SetBoundary(sAxis0 & (sAxisY | sAxisMax), direction,
1007
1008 // sAxis1 & sAxisMin
1009 direction = GetCorner(sC0Max1Min) - GetCorner(sC0Min1Min);
1010 direction = direction.unit();
1011 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction,
1013
1014 // sAxis1 & sAxisMax
1015 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Min1Max);
1016 direction = direction.unit();
1017 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction,
1019
1020 }
1021 else
1022 {
1023 G4Exception("G4TwistTrapAlphaSide::SetCorners()",
1024 "GeomSolids0001", FatalException,
1025 "Feature NOT implemented !");
1026 }
1027}
1028
1029//=====================================================================
1030//* GetPhiUAtX --------------------------------------------------------
1031
1032void
1033G4TwistTrapAlphaSide::GetPhiUAtX( G4ThreeVector p, G4double& phi, G4double& u )
1034{
1035 // find closest point XX on surface for a given point p
1036 // X0 is a point on the surface, d is the direction
1037 // ( both for a fixed z = pz)
1038
1039 // phi is given by the z coordinate of p
1040
1041 phi = p.z()/(2*fDz)*fPhiTwist ;
1042 u = (fPhiTwist*(2*fDx1*fDx1 - 2*fDx2*fDx2 - fa1md1*(fDx3 + fDx4)
1043 - 4*(fDx3plus1 + fDx4plus2)*fDy1*fTAlph)
1044 - 2*(2*fDx1*fDx1 - 2*fDx2*fDx2 + fa1md1*(fDx3 + fDx4)
1045 + 4*(fDx3minus1 + fDx4minus2)*fDy1*fTAlph)*phi
1046 - 4*(fa1md1*(fdeltaX*phi - fPhiTwist*p.x())
1047 + 4*fDy1*(fdeltaY*phi + fdeltaX*fTAlph*phi
1048 - fPhiTwist*(fTAlph*p.x() + p.y())))*std::cos(phi)
1049 - 4*(fa1md1*fdeltaY*phi - 4*fdeltaX*fDy1*phi
1050 + 4*fdeltaY*fDy1*fTAlph*phi + 4*fDy1*fPhiTwist*p.x()
1051 - fPhiTwist*(fa1md1 + 4*fDy1*fTAlph)*p.y())*std::sin(phi))
1052 /(fDy1* fPhiTwist*((std::fabs(((fa1md1 + 4*fDy1*fTAlph)*std::cos(phi))
1053 /fDy1 - 4*std::sin(phi)))
1054 *(std::fabs(((fa1md1 + 4*fDy1*fTAlph)*std::cos(phi))
1055 /fDy1 - 4*std::sin(phi)))
1056 + (std::fabs(4*std::cos(phi)
1057 + ((fa1md1 + 4*fDy1*fTAlph)*std::sin(phi))/fDy1))
1058 * (std::fabs(4*std::cos(phi)
1059 + ((fa1md1 + 4*fDy1*fTAlph)*std::sin(phi))/fDy1)))) ;
1060}
1061
1062//=====================================================================
1063//* ProjectPoint ------------------------------------------------------
1064
1066G4TwistTrapAlphaSide::ProjectPoint(const G4ThreeVector& p, G4bool isglobal)
1067{
1068 // Get Rho at p.z() on Hyperbolic Surface.
1069
1070 G4ThreeVector tmpp;
1071 if (isglobal)
1072 {
1073 tmpp = fRot.inverse()*p - fTrans;
1074 }
1075 else
1076 {
1077 tmpp = p;
1078 }
1079
1080 G4double phi ;
1081 G4double u ;
1082
1083 GetPhiUAtX( tmpp, phi, u ) ;
1084 // calculate (phi, u) for a point p close the surface
1085
1086 G4ThreeVector xx = SurfacePoint(phi,u) ;
1087 // transform back to cartesian coordinates
1088
1089 if (isglobal)
1090 {
1091 return (fRot * xx + fTrans);
1092 }
1093 else
1094 {
1095 return xx;
1096 }
1097}
1098
1099//=====================================================================
1100//* GetFacets ---------------------------------------------------------
1101
1102void
1103G4TwistTrapAlphaSide::GetFacets( G4int k, G4int n, G4double xyz[][3],
1104 G4int faces[][4], G4int iside )
1105{
1106
1107 G4double phi ;
1108 G4double b ;
1109
1110 G4double z, u ; // the two parameters for the surface equation
1111 G4ThreeVector p ; // a point on the surface, given by (z,u)
1112
1113 G4int nnode ;
1114 G4int nface ;
1115
1116 // calculate the (n-1)*(k-1) vertices
1117
1118 for ( G4int i = 0 ; i<n ; ++i )
1119 {
1120 z = -fDz+i*(2.*fDz)/(n-1) ;
1121 phi = z*fPhiTwist/(2*fDz) ;
1122 b = GetValueB(phi) ;
1123
1124 for ( G4int j = 0 ; j<k ; ++j )
1125 {
1126 nnode = GetNode(i,j,k,n,iside) ;
1127 u = -b/2 +j*b/(k-1) ;
1128 p = SurfacePoint(phi,u,true) ; // surface point in global coordinates
1129
1130 xyz[nnode][0] = p.x() ;
1131 xyz[nnode][1] = p.y() ;
1132 xyz[nnode][2] = p.z() ;
1133
1134 if ( i<n-1 && j<k-1 ) // conterclock wise filling
1135 {
1136 nface = GetFace(i,j,k,n,iside) ;
1137 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1)
1138 * (GetNode(i ,j ,k,n,iside)+1) ; // f77 numbering
1139 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1)
1140 * (GetNode(i ,j+1,k,n,iside)+1) ;
1141 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1)
1142 * (GetNode(i+1,j+1,k,n,iside)+1) ;
1143 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1)
1144 * (GetNode(i+1,j ,k,n,iside)+1) ;
1145 }
1146 }
1147 }
1148}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4bool DistanceSort(const Intersection &a, const Intersection &b)
G4bool EqualIntersection(const Intersection &a, const Intersection &b)
#define G4VSURFACENXX
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
HepRotation inverse() const
HepRotation & rotateZ(double delta)
Definition: Rotation.cc:87
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
G4TwistTrapAlphaSide(const G4String &name, G4double PhiTwist, G4double pDz, G4double pTheta, G4double pPhi, G4double pDy1, G4double pDx1, G4double pDx2, G4double pDy2, G4double pDx3, G4double pDx4, G4double pAlph, G4double AngleSide)
virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal=false)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
G4bool IsValid(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4double DistanceToPlane(const G4ThreeVector &p, const G4ThreeVector &x0, const G4ThreeVector &n0, G4ThreeVector &xx)
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4RotationMatrix fRot
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
static const G4int sAxisZ
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
CurrentStatus fCurStatWithV
static const G4int sAxisY
G4double DistanceToPlaneWithV(const G4ThreeVector &p, const G4ThreeVector &v, const G4ThreeVector &x0, const G4ThreeVector &n0, G4ThreeVector &xx)
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
@ kYAxis
Definition: geomdefs.hh:56
@ kZAxis
Definition: geomdefs.hh:57