Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ComponentGGNuclNuclXsc.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 24.11.08 V. Grichine - first implementation
27//
28// 04.09.18 V. Ivantchenko Major revision of interfaces and implementation
29// 27.05.19 V. Ivantchenko Removed obsolete methods and members
30
32
34#include "G4SystemOfUnits.hh"
35#include "G4NucleiProperties.hh"
37#include "G4HadronNucleonXsc.hh"
39#include "G4NuclearRadii.hh"
40#include "G4Pow.hh"
41
42static const G4double inve = 1./CLHEP::eplus;
43
45 : G4VComponentCrossSection("Glauber-Gribov Nucl-nucl"),
46 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
47 fDiffractionXsc(0.0), fEnergy(0.0), fParticle(nullptr), fZ(0), fA(0)
48{
49 theProton = G4Proton::Proton();
50 theNeutron = G4Neutron::Neutron();
51 theLambda = G4Lambda::Lambda();
52 fHNXsc = new G4HadronNucleonXsc();
53 fHadrNucl = new G4ComponentGGHadronNucleusXsc();
54}
55
57{
58 delete fHNXsc;
59}
60
61//////////////////////////////////////////////////////////////////////
62
64 const G4ParticleDefinition* aParticle, G4double kinEnergy,
66{
67 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
68 return fTotalXsc;
69}
70
71////////////////////////////////////////////////////////////////////
72
74 const G4ParticleDefinition* aParticle, G4double kinEnergy,
75 G4int Z, G4int A)
76{
77 ComputeCrossSections(aParticle, kinEnergy, Z, A);
78 return fTotalXsc;
79}
80
81/////////////////////////////////////////////////////////////////////
82
84 const G4ParticleDefinition* aParticle, G4double kinEnergy,
86{
87 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
88 return fInelasticXsc;
89}
90
91////////////////////////////////////////////////////////////////////
92
94 const G4ParticleDefinition* aParticle, G4double kinEnergy,
95 G4int Z, G4int A)
96{
97 ComputeCrossSections(aParticle, kinEnergy, Z, A);
98 return fInelasticXsc;
99}
100
101//////////////////////////////////////////////////////////////////
102
104 const G4ParticleDefinition* aParticle, G4double kinEnergy,
105 G4int Z, G4double A)
106{
107 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
108 return fElasticXsc;
109}
110
111///////////////////////////////////////////////////////////////////
112
114 const G4ParticleDefinition* aParticle, G4double kinEnergy,
115 G4int Z, G4int A)
116{
117 ComputeCrossSections(aParticle, kinEnergy, Z, A);
118 return fElasticXsc;
119}
120
121////////////////////////////////////////////////////////////////
122
124 const G4ParticleDefinition* aParticle, G4double kinEnergy,
125 G4int Z, G4int A)
126{
127 ComputeCrossSections(aParticle, kinEnergy, Z, A);
128 return (fInelasticXsc > fProductionXsc)
129 ? (fInelasticXsc - fProductionXsc)/fInelasticXsc : 0.0;
130}
131
132//////////////////////////////////////////////////////////////////////
133
135{}
136
137//////////////////////////////////////////////////////////////////////
138
140{
141 G4cout << "G4ComponentGGNuclNuclXsc: uses Glauber-Gribov formula" << G4endl;
142}
143
144//////////////////////////////////////////////////////////////////////
145
146void G4ComponentGGNuclNuclXsc::Description(std::ostream& outFile) const
147{
148 outFile << "G4ComponentGGNuclNuclXsc calculates total, inelastic and\n"
149 << "elastic cross sections for nucleus-nucleus collisions using\n"
150 << "the Glauber model with Gribov corrections. It is valid for\n"
151 << "all incident energies above 100 keV./n"
152 << "For the hydrogen target G4HadronNucleonXsc class is used.\n";
153}
154
155///////////////////////////////////////////////////////////////////////////////
156//
157// Calculates total and inelastic Xsc, derives elastic as total - inelastic
158// accordong to Glauber model with Gribov correction calculated in the dipole
159// approximation on light cone. Gaussian density of point-like nucleons helps
160// to calculate rest integrals of the model. [1] B.Z. Kopeliovich,
161// nucl-th/0306044 + simplification above
162
163void G4ComponentGGNuclNuclXsc::ComputeCrossSections(
164 const G4ParticleDefinition* aParticle, G4double kinEnergy,
165 G4int Z, G4int A)
166{
167 // check cache
168 if(aParticle == fParticle && fZ == Z && fA == A && kinEnergy == fEnergy)
169 { return; }
170 fParticle = aParticle;
171 fZ = Z;
172 fA = A;
173 fEnergy = kinEnergy;
174 G4Pow* pG4Pow=G4Pow::GetInstance();
175
176 G4int pZ = G4lrint(aParticle->GetPDGCharge()*inve);
177 G4int pA = aParticle->GetBaryonNumber();
178 G4int pL = aParticle->GetNumberOfLambdasInHypernucleus();
179 G4bool pHN = aParticle->IsHypernucleus();
180 G4double cHN(0.88);
181
182 // hydrogen
183 if(1 == Z && 1 == A) {
184 G4double e = kinEnergy*CLHEP::proton_mass_c2/aParticle->GetPDGMass();
185 fHadrNucl->ComputeCrossSections( theProton, e, pZ, pA, pL );
186 fTotalXsc = fHadrNucl->GetTotalGlauberGribovXsc();
187 fElasticXsc = fHadrNucl->GetElasticGlauberGribovXsc();
188 fInelasticXsc = fHadrNucl->GetInelasticGlauberGribovXsc();
189 fProductionXsc = fHadrNucl->GetProductionGlauberGribovXsc();
190 fDiffractionXsc = fHadrNucl->GetDiffractionGlauberGribovXsc();
191 return;
192 }
193 static const G4double cofInelastic = 2.4;
194 static const G4double cofTotal = 2.0;
195
196 G4double pTkin = kinEnergy/(G4double)pA;
197
198 G4int pN = pA - pZ;
199 G4int tN = A - Z;
200
202 G4double pR = G4NuclearRadii::Radius(pZ, pA);
203
204 if(pHN) pR *= std::sqrt( pG4Pow->Z23( pA - pL ) + cHN*pG4Pow->Z23( pL ) )/pG4Pow->Z13(pA);
205
206 G4double cB = ComputeCoulombBarier(aParticle, kinEnergy, Z, A, pR, tR);
207
208 if ( cB > 0. )
209 {
210 G4double sigma = (pZ*Z+pN*tN)*fHNXsc->HadronNucleonXscNS(theProton, theProton, pTkin);
211 if(pHN) sigma += pL*A*fHNXsc->HadronNucleonXsc(theLambda, theProton, pTkin);
212 G4double ppInXsc = fHNXsc->GetInelasticHadronNucleonXsc();
213
214 sigma += (pZ*tN+pN*Z)*fHNXsc->HadronNucleonXscNS(theNeutron, theProton, pTkin);
215 G4double npInXsc = fHNXsc->GetInelasticHadronNucleonXsc();
216
217 // G4cout<<"ppInXsc = "<<ppInXsc/millibarn<<"; npInXsc = "<<npInXsc/millibarn<<G4endl;
218 // G4cout<<"npTotXsc = "<<fHNXsc->GetTotalHadronNucleonXsc()/millibarn<<"; npElXsc = "
219 // <<fHNXsc->GetElasticHadronNucleonXsc()/millibarn<<G4endl;
220
221 G4double nucleusSquare = cofTotal*CLHEP::pi*( pR*pR + tR*tR ); // basically 2piRR
222
223 G4double ratio= sigma/nucleusSquare;
224 fTotalXsc = nucleusSquare*G4Log( 1. + ratio )*cB;
225 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )*cB/cofInelastic;
226 fElasticXsc = std::max(fTotalXsc - fInelasticXsc, 0.0);
227
228 G4double difratio = ratio/(1.+ratio);
229 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) );
230
231 G4double xratio= ((pZ*Z+pN*tN)*ppInXsc + (pZ*tN+pN*Z)*npInXsc)/nucleusSquare;
232 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*xratio)*cB/cofInelastic;
233 fProductionXsc = std::min(fProductionXsc, fInelasticXsc);
234 }
235 else
236 {
237 fInelasticXsc = 0.;
238 fTotalXsc = 0.;
239 fElasticXsc = 0.;
240 fProductionXsc = 0.;
241 fDiffractionXsc= 0.;
242 }
243}
244
245///////////////////////////////////////////////////////////////////////////////
246
248 const G4ParticleDefinition* aParticle,
249 G4double pTkin, G4int Z, G4int A,
250 G4double pR, G4double tR)
251{
252 G4int pZ = aParticle->GetPDGCharge()*inve;
253 G4double pM = aParticle->GetPDGMass();
255 G4double pElab = pTkin + pM;
256 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
257 G4double totTcm = totEcm - pM -tM;
258
259 static const G4double qfact = CLHEP::fine_structure_const*CLHEP::hbarc;
260 G4double bC = qfact*pZ*Z*0.5/(pR + tR);
261
262 G4double ratio = (totTcm <= bC ) ? 0. : 1. - bC/totTcm;
263 // G4cout<<"G4ComponentGGNuclNuclXsc::ComputeCoulombBarier= "<<ratio
264 // <<"; pTkin(GeV)= " <<pTkin/GeV<<";
265 // " pPlab = "<<pPlab/GeV<<"; bC = "<<bC/GeV<<"; pTcm = "
266 // <<pTcm/GeV<<G4endl;
267 return ratio;
268}
269
270//////////////////////////////////////////////////////////////////////////
271//
272// Return single-diffraction/inelastic cross-section ratio
273
275 const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
276{
277 ComputeCrossSections(aParticle->GetDefinition(),
278 aParticle->GetKineticEnergy(),
279 G4lrint(tZ), G4lrint(tA));
280
281 return (fInelasticXsc > 0.0) ? fDiffractionXsc/fInelasticXsc : 0.0;
282}
283
284//////////////////////////////////////////////////////////////////////////
285//
286// Return quasi-elastic/inelastic cross-section ratio
287
289 const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
290{
291 ComputeCrossSections(aParticle->GetDefinition(),
292 aParticle->GetKineticEnergy(),
293 G4lrint(tZ), G4lrint(tA));
294
295 return (fInelasticXsc > 0.0) ? 1.0 - fProductionXsc/fInelasticXsc : 0.0;
296}
297
298///////////////////////////////////////////////////////////////////////////////
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
void ComputeCrossSections(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A, G4int nL=0)
G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4double ComputeQuasiElasticRatio(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
G4double GetRatioQE(const G4DynamicParticle *, G4double At, G4double Zt)
G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4double GetRatioSD(const G4DynamicParticle *, G4double At, G4double Zt)
void DumpPhysicsTable(const G4ParticleDefinition &) final
G4double GetInelasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
G4double ComputeCoulombBarier(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A, G4double pR, G4double tR)
G4double GetTotalIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
void Description(std::ostream &) const final
G4double GetElasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
G4double GetInelasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double HadronNucleonXsc(const G4ParticleDefinition *theParticle, const G4ParticleDefinition *nucleon, G4double ekin)
G4double GetInelasticHadronNucleonXsc() const
G4double HadronNucleonXscNS(const G4ParticleDefinition *theParticle, const G4ParticleDefinition *nucleon, G4double ekin)
static G4Lambda * Lambda()
Definition: G4Lambda.cc:107
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
static G4double Radius(G4int Z, G4int A)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4double GetPDGCharge() const
G4int GetNumberOfLambdasInHypernucleus() const
G4bool IsHypernucleus() const
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double Z13(G4int Z) const
Definition: G4Pow.hh:123
G4double Z23(G4int Z) const
Definition: G4Pow.hh:125
static G4Proton * Proton()
Definition: G4Proton.cc:92
int G4lrint(double ad)
Definition: templates.hh:134