Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLEtaNElasticChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLRandom.hh"
42#include "G4INCLGlobals.hh"
43#include "G4INCLLogger.hh"
44
45namespace G4INCL {
46
48 : particle1(p1), particle2(p2)
49 {
50
51 }
52
54
55 }
56
58 Particle * nucleon;
59 Particle * eta;
60 if(particle1->isNucleon()) {
61 nucleon = particle1;
62 eta = particle2;
63 } else {
64 nucleon = particle2;
65 eta = particle1;
66 }
67
68 G4double plab=KinematicsUtils::momentumInLab(particle1, particle2);
69
70 G4double sh=nucleon->getEnergy()+eta->getEnergy();
71 G4double mn=nucleon->getMass();
72 G4double me=eta->getMass();
73 G4double en=(sh*sh+mn*mn-me*me)/(2*sh);
74 nucleon->setEnergy(en);
75 G4double ee=std::sqrt(en*en-mn*mn+me*me);
76 eta->setEnergy(ee);
77 G4double pn=std::sqrt(en*en-mn*mn);
78
79 ThreeVector mom_nucleon;
80
81 if (plab < 250.) {
82// Isotropy
83 mom_nucleon = Random::normVector(pn);
84 }
85
86// From Kamano
87 else {
88
89 const G4double pi=std::acos(-1.0);
90 G4double x1;
91 G4double u1;
92 G4double fteta;
93 G4double teta;
94 G4double fi;
95
97 G4double a1;
98 G4double a2;
99 G4double a3;
100 G4double a4;
101 G4double a5;
102 G4double a6;
103
104 if (plab > 1400.) plab=1400.; // no information on angular distributions above plab=1400 MeV
105 G4double p6=std::pow(plab, 6);
106 G4double p5=std::pow(plab, 5);
107 G4double p4=std::pow(plab, 4);
108 G4double p3=std::pow(plab, 3);
109 G4double p2=std::pow(plab, 2);
110 G4double p1=plab;
111
112// a6
113 if (plab < 300.) {
114 a6=-8.384000E-08*p1 - 1.15452E-04;
115 }
116 else if (plab < 500.){
117 a6=1.593966E-13*p4 - 2.619560E-10*p3 + 1.564701E-07*p2 - 3.986627E-05*p1 + 3.622575E-03;
118 }
119 else {
120 a6=6.143615E-20*p6 - 3.157181E-16*p5 + 6.348289E-13*p4 - 6.117961E-10*p3 + 2.764542E-07*p2 - 4.391048E-05*p1 - 1.443857E-03;
121 }
122// a5
123 if (plab < 650.) {
124 a5=-9.021076E-18*p6 + 2.176771E-14*p5 - 2.136095E-11*p4 + 1.100580E-08*p3 - 3.150857E-06*p2 + 4.761016E-04*p1 - 2.969608E-02;
125 }
126 else if (plab < 950.){
127 a5=4.424756E-18*p6 - 1.756295E-14*p5 + 2.625428E-11*p4 - 1.678272E-08*p3 + 2.227237E-06*p2 + 2.146666E-03*p1 - 7.065712E-01;
128 }
129 else {
130 a5=2.209585E-19*p6 - 1.546647E-15*p5 + 4.578142E-12*p4 - 7.303856E-09*p3 + 6.604074E-06*p2 - 3.205628E-03*p1 + 6.534893E-01;
131 }
132// a4
133 if (plab < 700.) {
134 a4=4.826684E-17*p6 - 1.534471E-13*p5 + 1.907868E-10*p4 - 1.192317E-07*p3 + 3.988902E-05*p2 - 6.822100E-03*p1 + 4.684685E-01;
135 }
136 else {
137 a4=-3.245143E-18*p6 + 2.174395E-14*p5 - 6.012288E-11*p4 + 8.772790E-08*p3 - 7.113554E-05*p2 + 3.029285E-02*p1 - 5.237677E+00;
138 }
139// a3
140 if (plab < 650.) {
141 a3=3.783071E-17*p6 - 1.151454E-13*p5 + 1.357165E-10*p4 - 8.036891E-08*p3 + 2.572396E-05*p2 - 4.245566E-03*p1 + 2.832772E-01;
142 }
143 else {
144 a3=-5.063316E-18*p6 + 3.223757E-14*p5 - 8.435635E-11*p4 + 1.159487E-07*p3 - 8.812510E-05*p2 + 3.500692E-02*p1 - 5.624556E+00;
145 }
146// a2
147 if (plab < 500.) {
148 a2=-6.085067E-14*p5 + 1.354078E-10*p4 - 1.124158E-07*p3 + 4.292106E-05*p2 - 7.218145E-03*p1 + 4.584962E-01;
149 }
150 else if (plab < 750.) {
151 a2= 9.512730E-11*p4 - 2.362724E-07*p3 + 2.171883E-04*p2 - 8.742722E-02*p1 + 1.309433E+01;
152 }
153 else {
154 a2=-4.228889E-18*p6 + 2.798222E-14*p5 - 7.640831E-11*p4 + 1.100124E-07*p3 - 8.778573E-05*p2 + 3.652772E-02*p1 - 6.025497E+00;
155 }
156// a1
157 if (plab < 500.) {
158 a1=-1.524408E-14*p5 + 3.007021E-11*p4 - 2.129570E-08*p3 + 5.607250E-06*p2 - 3.001598E-04*p1 + 8.701280E-04;
159 }
160 else if (plab < 750.) {
161 a1=-3.255396E-11*p4 + 8.168681E-08*p3 - 7.447474E-05*p2 + 2.917630E-02*p1 - 4.152037E+00;
162 }
163 else {
164 a1=9.964504E-19*p6 - 6.380168E-15*p5 + 1.638691E-11*p4 - 2.107063E-08*p3 + 1.347462E-05*p2 - 3.318304E-03*p1 - 5.030932E-02;
165 }
166// a0
167 a0=-3.220143E-17*p6 + 1.789654E-13*p5 - 3.912863E-10*p4 + 4.181510E-07*p3 - 2.147259E-04*p2 + 3.856266E-02*p1 + 2.609971E+00;
168
169 G4double interg1=2.*(a6/7. + a4/5. + a2/3. + a0); // (integral to normalize)
170 G4double f1=(a6+a5+a4+a3+a2+a1+a0)/interg1; // (Max normalized)
171
172 G4int passe1=0;
173 while (passe1==0) {
174 // Sample x from -1 to 1
175 x1=Random::shoot();
176 if (Random::shoot() > 0.5) x1=-x1;
177
178 // Sample u from 0 to 1
179 u1=Random::shoot();
180 fteta=(a6*x1*x1*x1*x1*x1*x1+a5*x1*x1*x1*x1*x1+a4*x1*x1*x1*x1+a3*x1*x1*x1+a2*x1*x1+a1*x1+a0)/interg1;
181 // The condition
182 if (u1*f1 < fteta) {
183 teta=std::acos(x1);
184 // std::cout << x1 << " " << fteta << " "<< f1/interg1 << " " << u1 << " " << interg1 << std::endl;
185 passe1=1;
186 }
187 }
188
189 fi=(2.0*pi)*Random::shoot();
190
191 ThreeVector mom_nucleon1(
192 pn*std::sin(teta)*std::cos(fi),
193 pn*std::sin(teta)*std::sin(fi),
194 pn*std::cos(teta)
195 );
196
197 mom_nucleon = -mom_nucleon1 ;
198
199 }
200
201 nucleon->setMomentum(mom_nucleon);
202 eta->setMomentum(-mom_nucleon);
203
204 fs->addModifiedParticle(nucleon);
205 fs->addModifiedParticle(eta);
206
207 }
208}
const G4double a0
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
EtaNElasticChannel(Particle *, Particle *)
void addModifiedParticle(Particle *p)
G4double getEnergy() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
void setEnergy(G4double energy)
G4double getMass() const
Get the cached particle mass.
G4bool isNucleon() const
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
ThreeVector normVector(G4double norm=1.)
G4double shoot()
Definition: G4INCLRandom.cc:93