Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NeutrinoNucleusModel Class Referenceabstract

#include <G4NeutrinoNucleusModel.hh>

+ Inheritance diagram for G4NeutrinoNucleusModel:

Public Member Functions

 G4NeutrinoNucleusModel (const G4String &name="neutrino-nucleus")
 
virtual ~G4NeutrinoNucleusModel ()
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double SampleXkr (G4double energy)
 
G4double GetXkr (G4int iEnergy, G4double prob)
 
G4double SampleQkr (G4double energy, G4double xx)
 
G4double GetQkr (G4int iE, G4int jX, G4double prob)
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)=0
 
void ClusterDecay (G4LorentzVector &lvX, G4int qX)
 
void MesonDecay (G4LorentzVector &lvX, G4int qX)
 
void FinalBarion (G4LorentzVector &lvB, G4int qB, G4int pdgB)
 
void RecoilDeexcitation (G4Fragment &fragment)
 
void FinalMeson (G4LorentzVector &lvM, G4int qM, G4int pdgM)
 
void CoherentPion (G4LorentzVector &lvP, G4int pdgP, G4Nucleus &targetNucleus)
 
void SetCutEnergy (G4double ec)
 
G4double GetCutEnergy ()
 
G4double GetNuEnergy ()
 
G4double GetQtransfer ()
 
G4double GetQ2 ()
 
G4double GetXsample ()
 
G4int GetPDGencoding ()
 
G4bool GetCascade ()
 
G4bool GetString ()
 
G4double GetCosTheta ()
 
G4double GetEmu ()
 
G4double GetEx ()
 
G4double GetMuMass ()
 
G4double GetW2 ()
 
G4double GetM1 ()
 
G4double GetMr ()
 
G4double GetTr ()
 
G4double GetDp ()
 
G4bool GetfBreak ()
 
G4bool GetfCascade ()
 
G4bool GetfString ()
 
G4LorentzVector GetLVl ()
 
G4LorentzVector GetLVh ()
 
G4LorentzVector GetLVt ()
 
G4LorentzVector GetLVcpi ()
 
G4double GetMinNuMuEnergy ()
 
G4double ThresholdEnergy (G4double mI, G4double mF, G4double mP)
 
G4double GetQEratioA ()
 
void SetQEratioA (G4double qea)
 
G4double FinalMomentum (G4double mI, G4double mF, G4double mP, G4LorentzVector lvX)
 
G4double FermiMomentum (G4Nucleus &targetNucleus)
 
G4double NucleonMomentum (G4Nucleus &targetNucleus)
 
G4double GetEx (G4int A, G4bool fP)
 
G4double GgSampleNM (G4Nucleus &nucl)
 
G4int GetEnergyIndex (G4double energy)
 
G4double GetNuMuQeTotRat (G4int index, G4double energy)
 
G4int GetOnePionIndex (G4double energy)
 
G4double GetNuMuOnePionProb (G4int index, G4double energy)
 
G4double CalculateQEratioA (G4int Z, G4int A, G4double energy, G4int nepdg)
 
virtual void ModelDescription (std::ostream &) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair< G4double, G4doubleGetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double, G4doubleGetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void ModelDescription (std::ostream &outFile) const
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 
 G4HadronicInteraction (const G4HadronicInteraction &right)=delete
 
const G4HadronicInteractionoperator= (const G4HadronicInteraction &right)=delete
 
G4bool operator== (const G4HadronicInteraction &right) const =delete
 
G4bool operator!= (const G4HadronicInteraction &right) const =delete
 

Protected Attributes

G4ParticleDefinitiontheMuonMinus
 
G4ParticleDefinitiontheMuonPlus
 
G4double fSin2tW
 
G4double fCutEnergy
 
G4int fNbin
 
G4int fIndex
 
G4int fEindex
 
G4int fXindex
 
G4int fQindex
 
G4int fOnePionIndex
 
G4int fPDGencoding
 
G4bool fCascade
 
G4bool fString
 
G4bool fProton
 
G4bool f2p2h
 
G4bool fBreak
 
G4double fNuEnergy
 
G4double fQ2
 
G4double fQtransfer
 
G4double fXsample
 
G4double fM1
 
G4double fM2
 
G4double fMt
 
G4double fMu
 
G4double fW2
 
G4double fMpi
 
G4double fW2pi
 
G4double fMinNuEnergy
 
G4double fDp
 
G4double fTr
 
G4double fEmu
 
G4double fEmuPi
 
G4double fEx
 
G4double fMr
 
G4double fCosTheta
 
G4double fCosThetaPi
 
G4double fQEratioA
 
G4LorentzVector fLVh
 
G4LorentzVector fLVl
 
G4LorentzVector fLVt
 
G4LorentzVector fLVcpi
 
G4GeneratorPrecompoundInterfacefPrecoInterface
 
G4PreCompoundModelfPreCompound
 
G4ExcitationHandlerfDeExcitation
 
G4NucleusfRecoil
 
G4int fSecID
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Static Protected Attributes

static const G4int fResNumber = 6
 
static const G4double fResMass [6]
 
static const G4int fClustNumber = 4
 
static const G4double fMesMass [4] = {1260., 980., 770., 139.57}
 
static const G4int fMesPDG [4] = {20213, 9000211, 213, 211}
 
static const G4double fBarMass [4] = {1700., 1600., 1232., 939.57}
 
static const G4int fBarPDG [4] = {12224, 32224, 2224, 2212}
 
static const G4double fNuMuResQ [50][50]
 
static const G4double fNuMuEnergy [50]
 
static const G4double fNuMuQeTotRat [50]
 
static const G4double fOnePionEnergy [58]
 
static const G4double fOnePionProb [58]
 
static const G4double fNuMuEnergyLogVector [50]
 
static G4double fNuMuXarrayKR [50][51] = {{1.0}}
 
static G4double fNuMuXdistrKR [50][50] = {{1.0}}
 
static G4double fNuMuQarrayKR [50][51][51] = {{{1.0}}}
 
static G4double fNuMuQdistrKR [50][51][50] = {{{1.0}}}
 
static const G4double fQEnergy [50]
 
static const G4double fANeMuQEratio [50]
 
static const G4double fNeMuQEratio [50]
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 

Detailed Description

Definition at line 62 of file G4NeutrinoNucleusModel.hh.

Constructor & Destructor Documentation

◆ G4NeutrinoNucleusModel()

G4NeutrinoNucleusModel::G4NeutrinoNucleusModel ( const G4String name = "neutrino-nucleus")

Definition at line 109 of file G4NeutrinoNucleusModel.cc.

110 : G4HadronicInteraction(name), fSecID(-1)
111{
112 SetMinEnergy( 0.0*GeV );
113 SetMaxEnergy( 100.*TeV );
114 SetMinEnergy(1.e-6*eV);
115
116 fNbin = 50;
117 fEindex = fXindex = fQindex = 0;
118 fOnePionIndex = 58;
119 fIndex = 50;
120 fCascade = fString = fProton = f2p2h = fBreak = false;
121
122 fNuEnergy = fQ2 = fQtransfer = fXsample = fDp = fTr = 0.;
123 fCosTheta = fCosThetaPi = 1.;
124 fEmuPi = fW2 = fW2pi = 0.;
125
126 fMu = 105.6583745*MeV;
127 fMpi = 139.57018*MeV;
128 fM1 = 939.5654133*MeV; // for nu_mu -> mu-, and n -> p
129 fM2 = 938.2720813*MeV;
130
131 fEmu = fMu;
132 fEx = fM1;
133 fMr = 1232.*MeV;
134 fMt = fM2; // threshold for N*-diffraction
135
137
138 fLVh = G4LorentzVector(0.,0.,0.,0.);
139 fLVl = G4LorentzVector(0.,0.,0.,0.);
140 fLVt = G4LorentzVector(0.,0.,0.,0.);
141 fLVcpi = G4LorentzVector(0.,0.,0.,0.);
142
143 fQEratioA = 0.5; // mean value around 1 GeV neutrino beams
144
147
148 // PDG2016: sin^2 theta Weinberg
149
150 fSin2tW = 0.23129; // 0.2312;
151
152 fCutEnergy = 0.; // default value
153
154
155 /*
156 // G4VPreCompoundModel* ptr;
157 // reuse existing pre-compound model as in binary cascade
158
159 fPrecoInterface = new G4GeneratorPrecompoundInterface ;
160
161 if( !fPreCompound )
162 {
163 G4HadronicInteraction* p =
164 G4HadronicInteractionRegistry::Instance()->FindModel("PRECO");
165 G4VPreCompoundModel* fPreCompound = static_cast<G4VPreCompoundModel*>(p);
166
167 if(!fPreCompound)
168 {
169 fPreCompound = new G4PreCompoundModel();
170 }
171 fPrecoInterface->SetDeExcitation(fPreCompound);
172 }
173 fDeExcitation = GetDeExcitation()->GetExcitationHandler();
174 */
175
180
181 fPDGencoding = 0; // unphysical as default
182 fRecoil = nullptr;
183
184 // Creator model ID
186}
CLHEP::HepLorentzVector G4LorentzVector
void SetMinEnergy(G4double anEnergy)
const G4String & GetModelName() const
void SetMaxEnergy(const G4double anEnergy)
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:98
G4GeneratorPrecompoundInterface * fPrecoInterface
G4ExcitationHandler * fDeExcitation
G4ParticleDefinition * theMuonMinus
G4PreCompoundModel * fPreCompound
G4ParticleDefinition * theMuonPlus
static G4int GetModelID(const G4int modelIndex)
void SetDeExcitation(G4VPreCompoundModel *ptr)

◆ ~G4NeutrinoNucleusModel()

G4NeutrinoNucleusModel::~G4NeutrinoNucleusModel ( )
virtual

Definition at line 189 of file G4NeutrinoNucleusModel.cc.

190{
192}

Member Function Documentation

◆ ApplyYourself()

◆ CalculateQEratioA()

G4double G4NeutrinoNucleusModel::CalculateQEratioA ( G4int  Z,
G4int  A,
G4double  energy,
G4int  nepdg 
)

Definition at line 1365 of file G4NeutrinoNucleusModel.cc.

1366{
1367 energy /= GeV;
1368 G4double qerata(0.5), rr(0.), x1(0.), x2(0.), y1(0.), y2(0.), aa(0.);
1369 G4int i(0), N(0);
1370
1371 if( A > Z ) N = A-Z;
1372
1373 for( i = 0; i < 50; i++)
1374 {
1375 if( fQEnergy[i] >= energy ) break;
1376 }
1377 if(i <= 0) return 1.;
1378 else if (i >= 49) return 0.;
1379 else
1380 {
1381 x1 = fQEnergy[i-1];
1382 x2 = fQEnergy[i];
1383
1384 if( nepdg == 12 || nepdg == 14 )
1385 {
1386 if( x1 >= x2) return fNeMuQEratio[i];
1387
1388 y1 = fNeMuQEratio[i-1];
1389 y2 = fNeMuQEratio[i];
1390 }
1391 else
1392 {
1393 if( x1 >= x2) return fANeMuQEratio[i];
1394
1395 y1 = fANeMuQEratio[i-1];
1396 y2 = fANeMuQEratio[i];
1397 }
1398 aa = (y2-y1)/(x2-x1);
1399 rr = y1 + (energy-x1)*aa;
1400
1401 if( nepdg == 12 || nepdg == 14 ) qerata = N*rr/( N*rr + A*( 1 - rr ) );
1402 else qerata = Z*rr/( Z*rr + A*( 1 - rr ) );
1403 }
1404 fQEratioA = qerata;
1405
1406 return qerata;
1407}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
static const G4double fQEnergy[50]
static const G4double fNeMuQEratio[50]
static const G4double fANeMuQEratio[50]
#define N
Definition: crc32.c:56
G4double energy(const ThreeVector &p, const G4double m)

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), and G4NuTauNucleusNcModel::ApplyYourself().

◆ ClusterDecay()

void G4NeutrinoNucleusModel::ClusterDecay ( G4LorentzVector lvX,
G4int  qX 
)

Definition at line 720 of file G4NeutrinoNucleusModel.cc.

721{
722 G4bool finB = false;
723 G4int pdgB(0), i(0), qM(0), qB(0); // pdgM(0),
724 G4double mM(0.), mB(0.), eM(0.), eB(0.), pM(0.), pB(0.);
725 G4double mm1(0.), mm22(0.), M1(0.), M2(0.), mX(0.);
726
727 mX = lvX.m();
728
731
732 // G4double deltaM = 1.*MeV; // 30.*MeV; // 10.*MeV; // 100.*MeV; // 20.*MeV; //
733 G4double deltaMr[4] = { 0.*MeV, 0.*MeV, 100.*MeV, 0.*MeV};
734
735 G4ThreeVector dir(0.,0.,0.);
736 G4ThreeVector bst(0.,0.,0.);
737 G4LorentzVector lvM(0.,0.,0.,0.);
738 G4LorentzVector lvB(0.,0.,0.,0.);
739
740 for( i = 0; i < fClustNumber; ++i) // check resonance
741 {
742 if( mX >= fBarMass[i] )
743 {
744 pdgB = fBarPDG[i];
745 // mB = G4ParticleTable::GetParticleTable()->FindParticle(pdgB)->GetPDGMass();
746 break;
747 }
748 }
749 if( i == fClustNumber || i == fClustNumber-1 ) // low mass, p || n
750 {
751 if ( qX == 2 || qX == 0) { pdgB = 2212; qB = 1;} // p for 2, 0
752
753 else if( qX == 1 || qX == -1) { pdgB = 2112; qB = 0;} // n for 1, -1
754
755 return FinalBarion( lvX, qB, pdgB);
756 }
757 else if( mX < fBarMass[i] + deltaMr[i] || mX < mN + mPi )
758 {
759 finB = true; // final barion -> out
760
761 if ( qX == 1 && pdgB != 2212) pdgB = pdgB - 10;
762 else if( qX == 0 && pdgB != 2212) pdgB = pdgB - 110;
763 else if( qX == 0 && pdgB == 2212) pdgB = pdgB - 100;
764
765 if( finB ) return FinalBarion( lvX, qX, pdgB ); // out
766 }
767 // no barion resonance, try 1->2 decay in COM frame
768
769 // try meson mass
770
771 mm1 = mPi + 1.*MeV; // pi+
772 mm22 = mX - mN; // mX-n
773
774 if( mm22 <= mm1 ) // out with p or n
775 {
776 if( qX == 2 || qX == 0) { pdgB = 2212; qB = 1;} // p
777 else if( qX == 1 || qX == -1) { pdgB = 2112; qB = 0;} // n
778
779 return FinalBarion(lvX, qB, pdgB);
780 }
781 else // try decay -> meson(cluster) + barion(cluster)
782 {
783 // G4double sigmaM = 50.*MeV; // 100.*MeV; // 200.*MeV; // 400.*MeV; // 800.*MeV; //
784 G4double rand = G4UniformRand();
785
786 // mM = mm1*mm22/( mm1 + rand*(mm22 - mm1) );
787 // mM = mm1*mm22/sqrt( mm1*mm1 + rand*(mm22*mm22 - mm1*mm1) );
788 // mM = -sigmaM*log( (1.- rand)*exp(-mm22/sigmaM) + rand*exp(-mm1/sigmaM) );
789 mM = mm1 + rand*(mm22-mm1);
790
791
792 for( i = 0; i < fClustNumber; ++i)
793 {
794 if( mM >= fMesMass[i] )
795 {
796 // pdgM = fMesPDG[i];
797 // mM = G4ParticleTable::GetParticleTable()->FindParticle(pdgM)->GetPDGMass();
798 break;
799 }
800 }
801 M1 = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass()+2.*MeV; // n
802 M2 = mX - mM;
803
804 if( M2 <= M1 ) //
805 {
806 if ( qX == 2 || qX == 0) { pdgB = 2212; qB = 1;} // p
807 else if( qX == 1 || qX == -1) { pdgB = 2112; qB = 0;} // n
808
809 return FinalBarion(lvX, qB, pdgB);
810 }
811 mB = M1 + G4UniformRand()*(M2-M1);
812 // mB = -sigmaM*log( (1.- rand)*exp(-M2/sigmaM) + rand*exp(-M1/sigmaM) );
813
814 bst = lvX.boostVector();
815
816 // dir = G4RandomDirection(); // ???
817 // dir = G4ThreeVector(0.,0.,1.);
818 dir = bst.orthogonal().unit(); // ??
819 // G4double cost = exp(-G4UniformRand());
820 // G4double sint = sqrt((1.-cost)*(1.+cost));
821 // G4double phi = twopi*G4UniformRand();
822 // dir = G4ThreeVector(sint*cos(phi), sint*sin(phi), cost);
823
824 eM = 0.5*(mX*mX + mM*mM - mB*mB)/mX;
825 pM = sqrt(eM*eM - mM*mM);
826 lvM = G4LorentzVector( pM*dir, eM);
827 lvM.boost(bst);
828
829 eB = 0.5*(mX*mX + mB*mB - mM*mM)/mX;
830 pB = sqrt(eB*eB - mB*mB);
831 lvB = G4LorentzVector(-pB*dir, eB);
832 lvB.boost(bst);
833
834 // G4cout<<mM<<"/"<<mB<<", ";
835
836 // charge exchange
837
838 if ( qX == 2 ) { qM = 1; qB = 1;}
839 else if( qX == 1 ) { qM = 0; qB = 1;}
840 else if( qX == 0 ) { qM = 0; qB = 0;}
841 else if( qX == -1 ) { qM = -1; qB = 0;}
842
843 // if ( qM == 0 ) pdgM = pdgM - 100;
844 // else if( qM == -1 ) pdgM = -pdgM;
845
846 MesonDecay( lvM, qM); // pdgM ); //
847
848 // else
849 ClusterDecay( lvB, qB ); // continue
850 }
851}
bool G4bool
Definition: G4Types.hh:86
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector boostVector() const
static const G4double fBarMass[4]
void MesonDecay(G4LorentzVector &lvX, G4int qX)
static const G4double fMesMass[4]
static const G4int fBarPDG[4]
void ClusterDecay(G4LorentzVector &lvX, G4int qX)
void FinalBarion(G4LorentzVector &lvB, G4int qB, G4int pdgB)
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), G4NuTauNucleusNcModel::ApplyYourself(), and ClusterDecay().

◆ CoherentPion()

void G4NeutrinoNucleusModel::CoherentPion ( G4LorentzVector lvP,
G4int  pdgP,
G4Nucleus targetNucleus 
)

Definition at line 595 of file G4NeutrinoNucleusModel.cc.

596{
597 G4int A(0), Z(0), pdg = pdgP;
598 fLVcpi = G4LorentzVector(0.,0.,0.,0.);
599
600 G4double rM(0.), mN(938.), det(0.), det2(0.);
601 G4double mI(0.);
602 mN = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass(); // *0.85; // *0.9; //
603
604 // mN = 1.*139.57 + G4UniformRand()*(938. - 1.*139.57);
605
606 G4ThreeVector vN = lvP.boostVector(), bst(0.,0.,0.);
607 // G4double gN = lvP.e()/lvP.m();
608 // G4LorentzVector lvNu(vN*gN*mN, mN*gN);
609 G4LorentzVector lvNu(0.,0.,0., mN); // lvNu(bst, mN);
610 lvP.boost(-vN); // 9-3-20
611 lvP = lvP - lvNu; // 9-3-20 already 1pi
612 lvP.boost(vN); // 9-3-20
613 lvNu.boost(vN); // 9-3-20
614
615 // G4cout<<vN-lvP.boostVector()<<", ";
616
617 Z = targetNucleus.GetZ_asInt();
618 A = targetNucleus.GetA_asInt();
619 rM = targetNucleus.AtomicMass(A,Z); //->AtomicMass(); //
620
621 // G4cout<<rM<<", ";
622 // G4cout<<A<<", ";
623
624 if( A == 1 )
625 {
626 bst = vN; // lvNu.boostVector(); // 9-3-20
627 // mI = 0.; // 9-3-20
628 rM = mN;
629 }
630 else
631 {
632 G4Nucleus targ(A-1,Z);
633 mI = targ.AtomicMass(A-1,Z);
634 G4LorentzVector lvTar(0.,0.,0.,mI);
635 lvNu = lvNu + lvTar;
636 bst = lvNu.boostVector();
637 // bst = fLVt.boostVector(); // to recoil rest frame
638 // G4cout<<fLVt<<" "<<bst<<G4endl;
639 }
640 lvP.boost(-bst); // 9-3-20
642 G4double eX = lvP.e();
643 G4double mX = lvP.m();
644 // G4cout<<mX-fMr<<", ";
645 G4ThreeVector dX = (lvP.vect()).unit();
646 // G4cout<<dX<<", ";
647 G4double pX = sqrt(eX*eX-mX*mX);
648 // G4cout<<pX<<", ";
649 G4double sumE = eX + rM;
650 G4double B = sumE*sumE + rM*rM - fMr*fMr - pX*pX;
651 G4double a = 4.*(sumE*sumE - pX*pX);
652 G4double b = -4.*B*pX;
653 G4double c = 4.*sumE*sumE*rM*rM - B*B;
654 det2 = b*b-4.*a*c;
655 if(det2 > 0.) det = sqrt(det2);
656 G4double dP = 0.5*(-b - det )/a;
657
658 // dP = FinalMomentum( mI, rM, fMr, lvP);
659 dP = FinalMomentum( rM, rM, fMr, lvP); // 9-3-20
660
661 // G4cout<<dP<<", ";
662 pX -= dP;
663 if( pX < 0. ) pX = 0.;
664
665 eX = sqrt( dP*dP + fMr*fMr );
666 G4LorentzVector lvN( dP*dX, eX );
667
668 if( A >= 1 ) lvN.boost(bst); // 9-3-20 back to lab
669
670 fLVcpi = lvN;
671
673 G4DynamicParticle* dp2 = new G4DynamicParticle( pd2, lvN);
674 theParticleChange.AddSecondary( dp2, fSecID ); // coherent pion
675
676 // recoil nucleus
677
678 G4double eRecoil = sqrt( rM*rM + pX*pX );
679 G4ThreeVector vRecoil(pX*dX);
680 G4LorentzVector lvTarg1( vRecoil, eRecoil);
681 lvTarg1.boost(bst);
682
683 const G4LorentzVector lvTarg = lvTarg1;
684
685 if( A > 1 ) // recoil target nucleus*
686 {
688 G4double exE = fLVt.m() - grM;
689
690 if( exE < 5.*MeV ) exE = 5.*MeV + G4UniformRand()*10.*MeV; // vmg???
691
692 const G4LorentzVector in4v( G4ThreeVector( 0., 0., 0.), grM );
693 G4Fragment fragment( A, Z, in4v); // lvTarg );
694 fragment.SetNumberOfHoles(1);
695 fragment.SetExcEnergyAndMomentum( exE, lvTarg );
696
697 RecoilDeexcitation(fragment);
698 }
699 else // recoil target proton
700 {
701 G4double eTkin = eRecoil - rM;
702 G4double eTh = 0.01*MeV; // 10.*MeV;
703
704 if( eTkin > eTh )
705 {
708 }
710 }
711 return;
712}
G4double B(G4double temperature)
CLHEP::Hep3Vector G4ThreeVector
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetLocalEnergyDeposit(G4double aE)
G4double FinalMomentum(G4double mI, G4double mF, G4double mP, G4LorentzVector lvX)
void RecoilDeexcitation(G4Fragment &fragment)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:105
G4double AtomicMass(const G4double A, const G4double Z, const G4int numberOfLambdas=0) const
Definition: G4Nucleus.cc:357
static G4Proton * Proton()
Definition: G4Proton.cc:92

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), and G4NuTauNucleusNcModel::ApplyYourself().

◆ FermiMomentum()

G4double G4NeutrinoNucleusModel::FermiMomentum ( G4Nucleus targetNucleus)

Definition at line 1057 of file G4NeutrinoNucleusModel.cc.

1058{
1059 G4int Z = targetNucleus.GetZ_asInt();
1060 G4int A = targetNucleus.GetA_asInt();
1061
1062 G4double kF(250.*MeV);
1063 G4double kp = 365.*MeV;
1064 G4double kn = 231.*MeV;
1065 G4double t1 = 0.479;
1066 G4double t2 = 0.526;
1067 G4double ZpA = G4double(Z)/G4double(A);
1068 G4double NpA = 1. - ZpA;
1069
1070 if ( Z == 1 && A == 1 ) { kF = 0.; } // hydrogen ???
1071 else if ( Z == 1 && A == 2 ) { kF = 87.*MeV; }
1072 else if ( Z == 2 && A == 3 ) { kF = 134.*MeV; }
1073 else if ( Z == 6 && A == 12 ) { kF = 221.*MeV; }
1074 else if ( Z == 14 && A == 28 ) { kF = 239.*MeV; }
1075 else if ( Z == 26 && A == 56 ) { kF = 257.*MeV; }
1076 else if ( Z == 82 && A == 208 ) { kF = 265.*MeV; }
1077 else
1078 {
1079 kF = kp*ZpA*( 1 - pow( G4double(A), -t1 ) ) + kn*NpA*( 1 - pow( G4double(A), -t2 ) );
1080 }
1081 return kF;
1082}

Referenced by GgSampleNM(), and NucleonMomentum().

◆ FinalBarion()

void G4NeutrinoNucleusModel::FinalBarion ( G4LorentzVector lvB,
G4int  qB,
G4int  pdgB 
)

Definition at line 449 of file G4NeutrinoNucleusModel.cc.

450{
451 G4int A(0), Z(0), pdg = pdgB;
452 // G4bool FiNucleon(false);
453
454 // if ( qB == 1 ) pdg = pdgB - 10;
455 // else if ( qB == 0 ) pdg = pdgB - 110;
456 // else if ( qB == -1 ) pdg = pdgB - 1110;
457
458 if( pdg == 2212 || pdg == 2112)
459 {
461 // FiNucleon = true;
462 }
463 else fMr = lvB.m();
464
466 lvB.boost(-bst); // in fLVt rest system
467
468 G4double eX = lvB.e();
469 G4double det(0.), det2(0.), rM(0.), mX = lvB.m();
470 G4ThreeVector dX = (lvB.vect()).unit();
471 G4double pX = sqrt(eX*eX-mX*mX);
472
473 if( fRecoil )
474 {
475 Z = fRecoil->GetZ_asInt();
476 A = fRecoil->GetA_asInt();
477 rM = fRecoil->AtomicMass(A,Z); //->AtomicMass(); //
478 rM = fLVt.m();
479 }
480 else // A=0 nu+p
481 {
482 A = 0;
483 Z = 1;
484 rM = electron_mass_c2;
485 }
486 // G4cout<<A<<", ";
487
488 G4double sumE = eX + rM;
489 G4double B = sumE*sumE + rM*rM - fMr*fMr - pX*pX;
490 G4double a = 4.*(sumE*sumE - pX*pX);
491 G4double b = -4.*B*pX;
492 G4double c = 4.*sumE*sumE*rM*rM - B*B;
493 det2 = b*b-4.*a*c;
494 if( det2 <= 0. ) det = 0.;
495 else det = sqrt(det2);
496 G4double dP = 0.5*(-b - det )/a;
497
498 fDp = dP;
499
500 pX -= dP;
501
502 if(pX < 0.) pX = 0.;
503
504 // if( A == 0 ) G4cout<<pX/MeV<<", ";
505
506 eX = sqrt( pX*pX + fMr*fMr );
507 G4LorentzVector lvN( pX*dX, eX );
508 lvN.boost(bst); // back to lab
509
510 if( pdg == 2212 || pdg == 2112) // nucleons mX >= fMr, dP >= 0
511 {
513 G4DynamicParticle* dp2 = new G4DynamicParticle( pd2, lvN);
515
516 }
517 else // delta resonances
518 {
520 G4KineticTrack ddkt( rePart, 0., G4ThreeVector( 0., 0., 0.), lvN);
521 G4KineticTrackVector* ddktv = ddkt.Decay();
522
524
525 for( unsigned int i = 0; i < ddktv->size(); i++ ) // add products to partchange
526 {
527 G4DynamicParticle * aNew =
528 new G4DynamicParticle( ddktv->operator[](i)->GetDefinition(),
529 ddktv->operator[](i)->Get4Momentum() );
530
531 // G4cout<<" "<<i<<", "<<aNew->GetDefinition()->GetParticleName()<<", "<<aNew->Get4Momentum()<<G4endl;
532
534 delete ddktv->operator[](i);
535 }
536 delete ddktv;
537 }
538 // recoil nucleus
539
540 G4double eRecoil = sqrt( rM*rM + dP*dP );
541 fTr = eRecoil - rM;
542 G4ThreeVector vRecoil(dP*dX);
543 // dP += G4UniformRand()*10.*MeV;
544 G4LorentzVector rec4v(vRecoil, 0.);
545 rec4v.boost(bst); // back to lab
546 fLVt += rec4v;
547 const G4LorentzVector lvTarg = fLVt; // (vRecoil, eRecoil);
548
549
550 if( fRecoil ) // proton*?
551 {
553 G4double exE = fLVt.m() - grM;
554 if( exE < 5.*MeV ) exE = 5.*MeV + G4UniformRand()*10.*MeV;
555
556 const G4LorentzVector in4v( G4ThreeVector( 0., 0., 0.), grM );
557 G4Fragment fragment( A, Z, in4v); // lvTarg );
558 fragment.SetNumberOfHoles(1);
559 fragment.SetExcEnergyAndMomentum( exE, lvTarg );
560
561 RecoilDeexcitation(fragment);
562 }
563 else // momentum?
564 {
566 }
567}
ParticleList decay(Cluster *const c)
Carries out a cluster decay.

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), G4NuTauNucleusNcModel::ApplyYourself(), and ClusterDecay().

◆ FinalMeson()

void G4NeutrinoNucleusModel::FinalMeson ( G4LorentzVector lvM,
G4int  qM,
G4int  pdgM 
)

Definition at line 409 of file G4NeutrinoNucleusModel.cc.

410{
411 G4int pdg = pdgM;
412 // if ( qM == 0 ) pdg = pdgM - 100;
413 // else if ( qM == -1 ) pdg = -pdgM;
414
415 if( pdg == 211 || pdg == -211 || pdg == 111) // pions
416 {
418 G4DynamicParticle* dp2 = new G4DynamicParticle( pd2, lvM);
420 }
421 else // meson resonances
422 {
424 FindParticle(pdg);
425 G4KineticTrack ddkt( rePart, 0., G4ThreeVector(0.,0.,0.), lvM);
426 G4KineticTrackVector* ddktv = ddkt.Decay();
427
429
430 for( unsigned int i = 0; i < ddktv->size(); i++ ) // add products to partchange
431 {
432 G4DynamicParticle * aNew =
433 new G4DynamicParticle( ddktv->operator[](i)->GetDefinition(),
434 ddktv->operator[](i)->Get4Momentum());
435
436 // G4cout<<" "<<i<<", "<<aNew->GetDefinition()->GetParticleName()<<", "<<aNew->Get4Momentum()<<G4endl;
437
439 delete ddktv->operator[](i);
440 }
441 delete ddktv;
442 }
443}

Referenced by MesonDecay().

◆ FinalMomentum()

G4double G4NeutrinoNucleusModel::FinalMomentum ( G4double  mI,
G4double  mF,
G4double  mP,
G4LorentzVector  lvX 
)

Definition at line 1026 of file G4NeutrinoNucleusModel.cc.

1027{
1028 G4double result(0.), delta(0.);
1029 // G4double mI2 = mI*mI;
1030 G4double mF2 = mF*mF;
1031 G4double mP2 = mP*mP;
1032 G4double eX = lvX.e();
1033 // G4double mX = lvX.m();
1034 G4double pX = lvX.vect().mag();
1035 G4double pX2 = pX*pX;
1036 G4double sI = eX + mI;
1037 G4double sI2 = sI*sI;
1038 G4double B = sI2 - mF2 -pX2 + mP2;
1039 G4double B2 = B*B;
1040 G4double a = 4.*(sI2-pX2);
1041 G4double b = -4.*B*pX;
1042 G4double c = 4.*sI2*mP2 - B2;
1043 G4double delta2 = b*b -4.*a*c;
1044
1045 if( delta2 >= 0. ) delta = sqrt(delta2);
1046
1047 result = 0.5*(-b-delta)/a;
1048 // result = 0.5*(-b+delta)/a;
1049
1050 return result;
1051}
double mag() const

Referenced by CoherentPion().

◆ GetCascade()

G4bool G4NeutrinoNucleusModel::GetCascade ( )
inline

Definition at line 107 of file G4NeutrinoNucleusModel.hh.

107{return fCascade;};

◆ GetCosTheta()

G4double G4NeutrinoNucleusModel::GetCosTheta ( )
inline

Definition at line 110 of file G4NeutrinoNucleusModel.hh.

110{return fCosTheta;};

◆ GetCutEnergy()

G4double G4NeutrinoNucleusModel::GetCutEnergy ( )
inline

Definition at line 99 of file G4NeutrinoNucleusModel.hh.

99{return fCutEnergy;};

◆ GetDp()

G4double G4NeutrinoNucleusModel::GetDp ( )
inline

Definition at line 118 of file G4NeutrinoNucleusModel.hh.

118{return fDp;};

◆ GetEmu()

G4double G4NeutrinoNucleusModel::GetEmu ( )
inline

Definition at line 111 of file G4NeutrinoNucleusModel.hh.

111{return fEmu;};

◆ GetEnergyIndex()

G4int G4NeutrinoNucleusModel::GetEnergyIndex ( G4double  energy)

Definition at line 1213 of file G4NeutrinoNucleusModel.cc.

1214{
1215 G4int i, eIndex = 0;
1216
1217 for( i = 0; i < fIndex; i++)
1218 {
1219 if( energy <= fNuMuEnergy[i]*GeV )
1220 {
1221 eIndex = i;
1222 break;
1223 }
1224 }
1225 if( i >= fIndex ) eIndex = fIndex;
1226 // G4cout<<"eIndex = "<<eIndex<<G4endl;
1227 return eIndex;
1228}
static const G4double fNuMuEnergy[50]

◆ GetEx() [1/2]

◆ GetEx() [2/2]

G4double G4NeutrinoNucleusModel::GetEx ( G4int  A,
G4bool  fP 
)

Definition at line 1115 of file G4NeutrinoNucleusModel.cc.

1116{
1117 G4double eX(10.*MeV), a1(0.), a2(0.), e1(0.), e2(0.), aa = G4double(A);
1118 G4int i(0);
1119 const G4int maxBin = 12;
1120
1121 G4double refA[maxBin] = { 2., 6., 12., 16., 27., 28., 40., 50., 56., 58., 197., 208. };
1122
1123 G4double pEx[maxBin] = { 0., 12.2, 10.1, 10.9, 21.6, 12.4, 17.8, 17., 19., 16.8, 19.5, 14.7 };
1124
1125 G4double nEx[maxBin] = { 0., 12.2, 10., 10.2, 21.6, 12.4, 21.8, 17., 19., 16.8, 19.5, 16.9 };
1126
1127 G4DataVector dE(12,0.);
1128
1129 if(fP) for( i = 0; i < maxBin; ++i ) dE[i] = pEx[i];
1130 else dE[i] = nEx[i];
1131
1132 for( i = 0; i < maxBin; ++i )
1133 {
1134 if( aa <= refA[i] ) break;
1135 }
1136 if( i >= maxBin ) eX = dE[maxBin-1];
1137 else if( i <= 0 ) eX = dE[0];
1138 else
1139 {
1140 a1 = refA[i-1];
1141 a2 = refA[i];
1142 e1 = dE[i-1];
1143 e2 = dE[i];
1144 if (a1 == a2 || e1 == e2 ) eX = dE[i];
1145 else eX = e1 + (e2-e1)*(aa-a1)/(a2-a1);
1146 }
1147 return eX;
1148}

◆ GetfBreak()

G4bool G4NeutrinoNucleusModel::GetfBreak ( )
inline

Definition at line 120 of file G4NeutrinoNucleusModel.hh.

120{return fBreak;};

◆ GetfCascade()

G4bool G4NeutrinoNucleusModel::GetfCascade ( )
inline

Definition at line 121 of file G4NeutrinoNucleusModel.hh.

121{return fCascade;};

◆ GetfString()

G4bool G4NeutrinoNucleusModel::GetfString ( )
inline

Definition at line 122 of file G4NeutrinoNucleusModel.hh.

122{return fString;};

◆ GetLVcpi()

G4LorentzVector G4NeutrinoNucleusModel::GetLVcpi ( )
inline

Definition at line 127 of file G4NeutrinoNucleusModel.hh.

127{return fLVcpi;};

◆ GetLVh()

G4LorentzVector G4NeutrinoNucleusModel::GetLVh ( )
inline

Definition at line 125 of file G4NeutrinoNucleusModel.hh.

125{return fLVh;};

◆ GetLVl()

G4LorentzVector G4NeutrinoNucleusModel::GetLVl ( )
inline

Definition at line 124 of file G4NeutrinoNucleusModel.hh.

124{return fLVl;};

◆ GetLVt()

G4LorentzVector G4NeutrinoNucleusModel::GetLVt ( )
inline

Definition at line 126 of file G4NeutrinoNucleusModel.hh.

126{return fLVt;};

◆ GetM1()

G4double G4NeutrinoNucleusModel::GetM1 ( )
inline

Definition at line 115 of file G4NeutrinoNucleusModel.hh.

115{return fM1;};

◆ GetMinNuMuEnergy()

G4double G4NeutrinoNucleusModel::GetMinNuMuEnergy ( )
inline

Definition at line 129 of file G4NeutrinoNucleusModel.hh.

129{ return fMu + 0.5*fMu*fMu/fM1 + 4.*CLHEP::MeV; }; // kinematics + accuracy for sqrts

Referenced by G4NeutrinoNucleusModel().

◆ GetMr()

G4double G4NeutrinoNucleusModel::GetMr ( )
inline

Definition at line 116 of file G4NeutrinoNucleusModel.hh.

116{return fMr;};

◆ GetMuMass()

G4double G4NeutrinoNucleusModel::GetMuMass ( )
inline

Definition at line 113 of file G4NeutrinoNucleusModel.hh.

113{return fMu;};

◆ GetNuEnergy()

G4double G4NeutrinoNucleusModel::GetNuEnergy ( )
inline

Definition at line 101 of file G4NeutrinoNucleusModel.hh.

101{return fNuEnergy;};

◆ GetNuMuOnePionProb()

G4double G4NeutrinoNucleusModel::GetNuMuOnePionProb ( G4int  index,
G4double  energy 
)

Definition at line 1314 of file G4NeutrinoNucleusModel.cc.

1315{
1316 G4double ratio(0.);
1317
1318 if( index <= 0 || energy < fOnePionEnergy[0] ) ratio = 0.;
1319 else if ( index >= fOnePionIndex ) ratio = fOnePionProb[fOnePionIndex-1]*fOnePionEnergy[fOnePionIndex-1]*GeV/energy;
1320 else
1321 {
1322 G4double x1 = fOnePionEnergy[index-1]*GeV;
1323 G4double x2 = fOnePionEnergy[index]*GeV;
1324 G4double y1 = fOnePionProb[index-1];
1325 G4double y2 = fOnePionProb[index];
1326
1327 if( x1 >= x2) return fOnePionProb[index];
1328 else
1329 {
1330 G4double angle = (y2-y1)/(x2-x1);
1331 ratio = y1 + (energy-x1)*angle;
1332 }
1333 }
1334 return ratio;
1335}
static const G4double fOnePionProb[58]
static const G4double fOnePionEnergy[58]

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), and G4NuTauNucleusNcModel::ApplyYourself().

◆ GetNuMuQeTotRat()

G4double G4NeutrinoNucleusModel::GetNuMuQeTotRat ( G4int  index,
G4double  energy 
)

Definition at line 1234 of file G4NeutrinoNucleusModel.cc.

1235{
1236 G4double ratio(0.);
1237 // GetMinNuMuEnergy()
1238 if( index <= 0 || energy < fNuMuEnergy[0] ) ratio = 0.;
1239 else if (index >= fIndex) ratio = fNuMuQeTotRat[fIndex-1]*fOnePionEnergy[fIndex-1]*GeV/energy;
1240 else
1241 {
1242 G4double x1 = fNuMuEnergy[index-1]*GeV;
1243 G4double x2 = fNuMuEnergy[index]*GeV;
1244 G4double y1 = fNuMuQeTotRat[index-1];
1245 G4double y2 = fNuMuQeTotRat[index];
1246
1247 if(x1 >= x2) return fNuMuQeTotRat[index];
1248 else
1249 {
1250 G4double angle = (y2-y1)/(x2-x1);
1251 ratio = y1 + (energy-x1)*angle;
1252 }
1253 }
1254 return ratio;
1255}
static const G4double fNuMuQeTotRat[50]

◆ GetOnePionIndex()

G4int G4NeutrinoNucleusModel::GetOnePionIndex ( G4double  energy)

◆ GetPDGencoding()

G4int G4NeutrinoNucleusModel::GetPDGencoding ( )
inline

Definition at line 106 of file G4NeutrinoNucleusModel.hh.

106{return fPDGencoding;};

◆ GetQ2()

G4double G4NeutrinoNucleusModel::GetQ2 ( )
inline

Definition at line 103 of file G4NeutrinoNucleusModel.hh.

103{return fQ2;};

◆ GetQEratioA()

G4double G4NeutrinoNucleusModel::GetQEratioA ( )
inline

Definition at line 136 of file G4NeutrinoNucleusModel.hh.

136{ return fQEratioA; };

◆ GetQkr()

G4double G4NeutrinoNucleusModel::GetQkr ( G4int  iE,
G4int  jX,
G4double  prob 
)

Definition at line 366 of file G4NeutrinoNucleusModel.cc.

367{
368 G4int i(0), nBin=50;
369 G4double qq(0.);
370
371 for( i = 0; i < nBin; ++i )
372 {
373 if( prob <= fNuMuQdistrKR[iE][jX][i] )
374 break;
375 }
376 if(i <= 0 ) // Q-edge
377 {
378 fQindex = 0;
379 qq = fNuMuQarrayKR[iE][jX][0];
380 }
381 if ( i >= nBin )
382 {
383 fQindex = nBin;
384 qq = fNuMuQarrayKR[iE][jX][nBin];
385 }
386 else
387 {
388 fQindex = i;
389 G4double q1 = fNuMuQarrayKR[iE][jX][i];
390 G4double q2 = fNuMuQarrayKR[iE][jX][i+1];
391
392 G4double p1 = 0.;
393
394 if( i > 0 ) p1 = fNuMuQdistrKR[iE][jX][i-1];
395
396 G4double p2 = fNuMuQdistrKR[iE][jX][i];
397
398 if( p2 <= p1 ) qq = q1 + G4UniformRand()*(q2-q1);
399 else qq = q1 + (prob-p1)*(q2-q1)/(p2-p1);
400 }
401 return qq;
402}
static G4double fNuMuQarrayKR[50][51][51]
static G4double fNuMuQdistrKR[50][51][50]

Referenced by SampleQkr().

◆ GetQtransfer()

G4double G4NeutrinoNucleusModel::GetQtransfer ( )
inline

Definition at line 102 of file G4NeutrinoNucleusModel.hh.

102{return fQtransfer;};

◆ GetString()

G4bool G4NeutrinoNucleusModel::GetString ( )
inline

Definition at line 108 of file G4NeutrinoNucleusModel.hh.

108{return fString;};

◆ GetTr()

G4double G4NeutrinoNucleusModel::GetTr ( )
inline

Definition at line 117 of file G4NeutrinoNucleusModel.hh.

117{return fTr;};

◆ GetW2()

G4double G4NeutrinoNucleusModel::GetW2 ( )
inline

Definition at line 114 of file G4NeutrinoNucleusModel.hh.

114{return fW2;};

◆ GetXkr()

G4double G4NeutrinoNucleusModel::GetXkr ( G4int  iEnergy,
G4double  prob 
)

Definition at line 264 of file G4NeutrinoNucleusModel.cc.

265{
266 G4int i(0), nBin=50;
267 G4double xx(0.);
268
269 for( i = 0; i < nBin; ++i )
270 {
271 if( prob <= fNuMuXdistrKR[iEnergy][i] )
272 break;
273 }
274 if(i <= 0 ) // X-edge
275 {
276 fXindex = 0;
277 xx = fNuMuXarrayKR[iEnergy][0];
278 }
279 if ( i >= nBin )
280 {
281 fXindex = nBin;
282 xx = fNuMuXarrayKR[iEnergy][nBin];
283 }
284 else
285 {
286 fXindex = i;
287 G4double x1 = fNuMuXarrayKR[iEnergy][i];
288 G4double x2 = fNuMuXarrayKR[iEnergy][i+1];
289
290 G4double p1 = 0.;
291
292 if( i > 0 ) p1 = fNuMuXdistrKR[iEnergy][i-1];
293
294 G4double p2 = fNuMuXdistrKR[iEnergy][i];
295
296 if( p2 <= p1 ) xx = x1 + G4UniformRand()*(x2-x1);
297 else xx = x1 + (prob-p1)*(x2-x1)/(p2-p1);
298 }
299 return xx;
300}
static G4double fNuMuXarrayKR[50][51]
static G4double fNuMuXdistrKR[50][50]

Referenced by SampleXkr().

◆ GetXsample()

G4double G4NeutrinoNucleusModel::GetXsample ( )
inline

Definition at line 104 of file G4NeutrinoNucleusModel.hh.

104{return fXsample;};

◆ GgSampleNM()

G4double G4NeutrinoNucleusModel::GgSampleNM ( G4Nucleus nucl)

Definition at line 1156 of file G4NeutrinoNucleusModel.cc.

1157{
1158 f2p2h = false;
1159 G4double /* distr(0.), tail(0.), */ shift(1.), xx(1.), mom(0.), th(0.1);
1160 G4double kF = FermiMomentum( nucl);
1161 G4double momMax = 2.*kF; // 1.*GeV; // 1.*GeV; //
1162 G4double aa = 5.5;
1163 G4double ll = 6.0; // 6.5; //
1164
1165 G4int A = nucl.GetA_asInt();
1166
1167 if( A <= 12) th = 0.1;
1168 else
1169 {
1170 // th = 0.1/(1.+log(G4double(A)/12.));
1171 th = 1.2/( G4double(A) + 1.35*log(G4double(A)/12.) );
1172 }
1173 shift = 0.99; // 0.95; //
1174 xx = mom/shift/kF;
1175
1176 G4double rr = G4UniformRand();
1177
1178 if( rr > th )
1179 {
1180 aa = 5.5;
1181
1182 if( A <= 12 ) ll = 6.0;
1183 else
1184 {
1185 ll = 6.0 + 1.35*log(G4double(A)/12.);
1186 }
1187 xx = RandGamma::shoot(aa,ll);
1188 shift = 0.99;
1189 mom = xx*shift*kF;
1190 }
1191 else
1192 {
1193 f2p2h = true;
1194 aa = 6.5;
1195 ll = 6.5;
1196 xx = RandGamma::shoot(aa,ll);
1197 shift = 2.5;
1198 mom = xx*shift*kF;
1199 }
1200 if( mom > momMax ) mom = G4UniformRand()*momMax;
1201 if( mom > 2.*kF ) f2p2h = true;
1202
1203 // mom = 0.;
1204
1205 return mom;
1206}
static double shoot()
G4double FermiMomentum(G4Nucleus &targetNucleus)

Referenced by G4ANuElNucleusCcModel::SampleLVkr(), G4ANuMuNucleusCcModel::SampleLVkr(), G4ANuTauNucleusCcModel::SampleLVkr(), G4NuElNucleusCcModel::SampleLVkr(), G4NuMuNucleusCcModel::SampleLVkr(), and G4NuTauNucleusCcModel::SampleLVkr().

◆ IsApplicable()

G4bool G4NeutrinoNucleusModel::IsApplicable ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Reimplemented from G4HadronicInteraction.

Reimplemented in G4ANuElNucleusCcModel, G4ANuElNucleusNcModel, G4ANuMuNucleusCcModel, G4ANuMuNucleusNcModel, G4ANuTauNucleusCcModel, G4ANuTauNucleusNcModel, G4NuElNucleusCcModel, G4NuElNucleusNcModel, G4NuMuNucleusCcModel, G4NuMuNucleusNcModel, G4NuTauNucleusCcModel, and G4NuTauNucleusNcModel.

Definition at line 206 of file G4NeutrinoNucleusModel.cc.

208{
209 G4bool result = false;
210 G4String pName = aPart.GetDefinition()->GetParticleName();
211 G4double energy = aPart.GetTotalEnergy();
212
213 if( pName == "nu_mu" // || pName == "anti_nu_mu" )
214 &&
215 energy > fMinNuEnergy )
216 {
217 result = true;
218 }
219
220 return result;
221}

◆ MesonDecay()

void G4NeutrinoNucleusModel::MesonDecay ( G4LorentzVector lvX,
G4int  qX 
)

Definition at line 859 of file G4NeutrinoNucleusModel.cc.

860{
861 G4bool finB = false;
862 G4int pdgM(0), pdgB(0), i(0), qM(0), qB(0);
863 G4double mM(0.), mB(0.), eM(0.), eB(0.), pM(0.), pB(0.);
864 G4double mm1(0.), mm22(0.), M1(0.), M2(0.), mX(0.), Tkin(0.);
865
866 mX = lvX.m();
867 Tkin = lvX.e() - mX;
868
869 // if( mX < 1120*MeV && mX > 1020*MeV ) // phi(1020)->K+K-
870 if( mX < 1080*MeV && mX > 990*MeV && Tkin < 600*MeV ) // phi(1020)->K+K-
871 {
872 return FinalMeson( lvX, qB, 333);
873 }
875
876 G4double deltaMr[4] = { 0.*MeV, 0.*MeV, 100.*MeV, 0.*MeV};
877
878 G4ThreeVector dir(0.,0.,0.);
879 G4ThreeVector bst(0.,0.,0.);
880 G4LorentzVector lvM(0.,0.,0.,0.);
881 G4LorentzVector lvB(0.,0.,0.,0.);
882
883 for( i = 0; i < fClustNumber; ++i) // check resonance
884 {
885 if( mX >= fMesMass[i] )
886 {
887 pdgB = fMesPDG[i];
888 // mB = G4ParticleTable::GetParticleTable()->FindParticle(pdgB)->GetPDGMass();
889 break;
890 }
891 }
892 if( i == fClustNumber ) // || i == fClustNumber-1 ) // low mass, p || n
893 {
894 if ( qX == 1) { pdgB = 211; qB = 1;} // pi+
895 else if( qX == 0 ) { pdgB = 111; qB = 0;} // pi0
896 else if( qX == -1) { pdgB = -211; qB = -1;} // pi-
897
898 return FinalMeson( lvX, qB, pdgB);
899 }
900 else if( mX < fMesMass[i] + deltaMr[i] ) // || mX < mPi + mPi ) //
901 {
902 finB = true; // final barion -> out
903 pdgB = fMesPDG[i];
904
905 // if ( qX == 1 && pdgB != 2212) pdgB = pdgB - 10;
906
907 if( qX == 0 ) pdgB = pdgB - 100;
908 else if( qX == -1 ) pdgB = -pdgB;
909
910 if( finB ) return FinalMeson( lvX, qX, pdgB ); // out
911 }
912 // no resonance, try 1->2 decay in COM frame
913
914 // try meson
915
916 mm1 = mPi + 1.*MeV; // pi+
917 mm22 = mX - mPi - 1.*MeV; // mX-n
918
919 if( mm22 <= mm1 ) // out
920 {
921 if ( qX == 1) { pdgB = 211; qB = 1;} // pi+
922 else if( qX == 0 ) { pdgB = 111; qB = 0;} // pi0
923 else if( qX == -1) { pdgB = -211; qB = -1;} // pi-
924
925 return FinalMeson(lvX, qB, pdgB);
926 }
927 else // try decay -> pion + meson(cluster)
928 {
929 // G4double sigmaM = 50.*MeV; // 100.*MeV; // 200.*MeV; // 400.*MeV; // 800.*MeV; //
930 G4double rand = G4UniformRand();
931
932 if ( qX == 1 ) { qM = 1; qB = 0;}
933 else if( qX == 0 ) { qM = -1; qB = 1;} // { qM = 0; qB = 0;} //
934 else if( qX == -1 ) { qM = -1; qB = 0;}
935 /*
936 mM = mPi;
937 if(qM == 0) mM = G4ParticleTable::GetParticleTable()->FindParticle(111)->GetPDGMass(); //pi0
938 pdgM = fMesPDG[fClustNumber-1];
939 */
940 // mm1*mm22/( mm1 + rand*(mm22 - mm1) );
941 // mM = mm1*mm22/sqrt( mm1*mm1 + rand*(mm22*mm22 - mm1*mm1) );
942 // mM = -sigmaM*log( (1.- rand)*exp(-mm22/sigmaM) + rand*exp(-mm1/sigmaM) );
943 mM = mm1 + rand*(mm22-mm1);
944 // mM = mm1 + 0.9*(mm22-mm1);
945
946
947 for( i = 0; i < fClustNumber; ++i)
948 {
949 if( mM >= fMesMass[i] )
950 {
951 pdgM = fMesPDG[i];
952 // mM = G4ParticleTable::GetParticleTable()->FindParticle(pdgM)->GetPDGMass();
953 break;
954 }
955 }
956 if( i == fClustNumber || i == fClustNumber-1 ) // low mass, p || n
957 {
958 if ( qX == 1) { pdgB = 211; qB = 1;} // pi+
959 else if( qX == 0 ) { pdgB = 111; qB = 0;} // pi0
960 else if( qX == -1) { pdgB = -211; qB = -1;} // pi-
961
962 return FinalMeson( lvX, qB, pdgB);
963 }
964 else if( mX < fMesMass[i] + deltaMr[i] ) // || mX < mPi + mPi ) //
965 {
966 finB = true; // final barion -> out
967 pdgB = fMesPDG[i];
968
969 // if ( qX == 1 && pdgB != 2212) pdgB = pdgB - 10;
970
971 if( qX == 0 ) pdgB = pdgB - 100;
972 else if( qX == -1 ) pdgB = -pdgB;
973
974 if( finB ) return FinalMeson( lvX, qX, pdgB ); // out
975 }
976
978 M2 = mX - mM;
979
980 if( M2 <= M1 ) //
981 {
982 if ( qX == 1) { pdgB = 211; qB = 1;} // pi+
983 else if( qX == 0 ) { pdgB = 111; qB = 0;} // pi0
984 else if( qX == -1) { pdgB = -211; qB = -1;} // pi-
985
986 return FinalMeson(lvX, qB, pdgB);
987 }
988 mB = M1 + G4UniformRand()*(M2-M1);
989 // mB = -sigmaM*log( (1.- rand)*exp(-M2/sigmaM) + rand*exp(-M1/sigmaM) );
990 // mB = M1 + 0.9*(M2-M1);
991
992 bst = lvX.boostVector();
993
994 // dir = G4RandomDirection();
995 dir = bst.orthogonal().unit();
996
997 eM = 0.5*(mX*mX + mM*mM - mB*mB)/mX;
998 pM = sqrt(eM*eM - mM*mM);
999 lvM = G4LorentzVector( pM*dir, eM);
1000 lvM.boost(bst);
1001
1002 eB = 0.5*(mX*mX + mB*mB - mM*mM)/mX;
1003 pB = sqrt(eB*eB - mB*mB);
1004 lvB = G4LorentzVector(-pB*dir, eB);
1005 lvB.boost(bst);
1006
1007 // G4cout<<mM<<"/"<<mB<<", ";
1008
1009 // charge exchange
1010
1011 // if ( qX == 2 ) { qM = 1; qB = 1;}
1012
1013 if ( qM == 0 ) pdgM = pdgM - 100;
1014 else if( qM == -1 ) pdgM = -pdgM;
1015
1016 MesonDecay( lvM, qM ); //
1017
1018 MesonDecay( lvB, qB ); // continue
1019 }
1020}
static const G4int fMesPDG[4]
void FinalMeson(G4LorentzVector &lvM, G4int qM, G4int pdgM)

Referenced by ClusterDecay(), and MesonDecay().

◆ ModelDescription()

void G4NeutrinoNucleusModel::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Reimplemented in G4ANuElNucleusCcModel, G4ANuElNucleusNcModel, G4ANuMuNucleusCcModel, G4ANuMuNucleusNcModel, G4ANuTauNucleusCcModel, G4ANuTauNucleusNcModel, G4NuElNucleusCcModel, G4NuElNucleusNcModel, G4NuMuNucleusCcModel, G4NuMuNucleusNcModel, G4NuTauNucleusCcModel, and G4NuTauNucleusNcModel.

Definition at line 195 of file G4NeutrinoNucleusModel.cc.

196{
197
198 outFile << "G4NeutrinoNucleusModel is a neutrino-nucleus general\n"
199 << "model which uses the standard model \n"
200 << "transfer parameterization. The model is fully relativistic\n";
201
202}

◆ NucleonMomentum()

G4double G4NeutrinoNucleusModel::NucleonMomentum ( G4Nucleus targetNucleus)

Definition at line 1088 of file G4NeutrinoNucleusModel.cc.

1089{
1090 G4int A = targetNucleus.GetA_asInt();
1091 G4double kF = FermiMomentum( targetNucleus);
1092 G4double mom(0.), kCut = 0.5*GeV; // kCut = 1.*GeV; // kCut = 2.*GeV; // kCut = 4.*GeV; //
1093 // G4double cof = 2./GeV;
1094 // G4double ksi = kF*kF*cof*cof/pi/pi;
1095 G4double th = 1.; // 1. - 6.*ksi; //
1096
1097 if( G4UniformRand() < th || A < 3 ) // 1p1h
1098 {
1099 mom = kF*pow( G4UniformRand(), 1./3.);
1100 }
1101 else // 2p2h
1102 {
1103 mom = kF*kCut;
1104 mom /= kCut - G4UniformRand()*(kCut - kF);
1105 f2p2h = true;
1106 }
1107 return mom;
1108}

Referenced by G4ANuElNucleusNcModel::SampleLVkr(), G4ANuMuNucleusNcModel::SampleLVkr(), G4ANuTauNucleusNcModel::SampleLVkr(), G4NuElNucleusNcModel::SampleLVkr(), G4NuMuNucleusNcModel::SampleLVkr(), and G4NuTauNucleusNcModel::SampleLVkr().

◆ RecoilDeexcitation()

void G4NeutrinoNucleusModel::RecoilDeexcitation ( G4Fragment fragment)

Definition at line 574 of file G4NeutrinoNucleusModel.cc.

575{
576 G4ReactionProductVector* products = fPreCompound->DeExcite(fragment);
577
578 if( products != nullptr )
579 {
580 for( auto & prod : *products ) // prod is the pointer to final hadronic particle
581 {
582 theParticleChange.AddSecondary(new G4DynamicParticle( prod->GetDefinition(),
583 prod->GetTotalEnergy(),
584 prod->GetMomentum() ), fSecID );
585 delete prod;
586 }
587 delete products;
588 }
589}
std::vector< G4ReactionProduct * > G4ReactionProductVector
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment) final

Referenced by CoherentPion(), and FinalBarion().

◆ SampleQkr()

G4double G4NeutrinoNucleusModel::SampleQkr ( G4double  energy,
G4double  xx 
)

Definition at line 306 of file G4NeutrinoNucleusModel.cc.

307{
308 G4int nBin(50), iE=fEindex, jX=fXindex;
309 G4double qq(0.), qq1(0.), qq2(0.);
310 G4double prob = G4UniformRand();
311
312 // first E
313
314 if( iE <= 0 )
315 {
316 qq1 = GetQkr( 0, jX, prob);
317 }
318 else if ( iE >= nBin-1)
319 {
320 qq1 = GetQkr( nBin-1, jX, prob);
321 }
322 else
323 {
324 G4double q1 = GetQkr(iE-1,jX, prob);
325 G4double q2 = GetQkr(iE,jX, prob);
326
329 G4double e = G4Log(energy);
330
331 if( e2 <= e1) qq1 = q1 + G4UniformRand()*(q2-q1);
332 else qq1 = q1 + (e-e1)*(q2-q1)/(e2-e1); // lin in energy log-scale
333 }
334
335 // then X
336
337 if( jX <= 0 )
338 {
339 qq2 = GetQkr( iE, 0, prob);
340 }
341 else if ( jX >= nBin)
342 {
343 qq2 = GetQkr( iE, nBin, prob);
344 }
345 else
346 {
347 G4double q1 = GetQkr(iE,jX-1, prob);
348 G4double q2 = GetQkr(iE,jX, prob);
349
350 G4double e1 = G4Log(fNuMuXarrayKR[iE][jX-1]);
351 G4double e2 = G4Log(fNuMuXarrayKR[iE][jX]);
352 G4double e = G4Log(xx);
353
354 if( e2 <= e1) qq2 = q1 + G4UniformRand()*(q2-q1);
355 else qq2 = q1 + (e-e1)*(q2-q1)/(e2-e1); // lin in energy log-scale
356 }
357 qq = 0.5*(qq1+qq2);
358
359 return qq;
360}
G4double G4Log(G4double x)
Definition: G4Log.hh:227
G4double GetQkr(G4int iE, G4int jX, G4double prob)
static const G4double fNuMuEnergyLogVector[50]

Referenced by G4ANuElNucleusCcModel::SampleLVkr(), G4ANuElNucleusNcModel::SampleLVkr(), G4ANuMuNucleusCcModel::SampleLVkr(), G4ANuMuNucleusNcModel::SampleLVkr(), G4ANuTauNucleusCcModel::SampleLVkr(), G4ANuTauNucleusNcModel::SampleLVkr(), G4NuElNucleusCcModel::SampleLVkr(), G4NuElNucleusNcModel::SampleLVkr(), G4NuMuNucleusCcModel::SampleLVkr(), G4NuMuNucleusNcModel::SampleLVkr(), G4NuTauNucleusCcModel::SampleLVkr(), and G4NuTauNucleusNcModel::SampleLVkr().

◆ SampleXkr()

G4double G4NeutrinoNucleusModel::SampleXkr ( G4double  energy)

Definition at line 225 of file G4NeutrinoNucleusModel.cc.

226{
227 G4int i(0), nBin(50);
228 G4double xx(0.), prob = G4UniformRand();
229
230 for( i = 0; i < nBin; ++i )
231 {
232 if( energy <= fNuMuEnergyLogVector[i] ) break;
233 }
234 if( i <= 0) // E-edge
235 {
236 fEindex = 0;
237 xx = GetXkr( 0, prob);
238 }
239 else if ( i >= nBin)
240 {
241 fEindex = nBin-1;
242 xx = GetXkr( nBin-1, prob);
243 }
244 else
245 {
246 fEindex = i;
247 G4double x1 = GetXkr(i-1,prob);
248 G4double x2 = GetXkr(i,prob);
249
252 G4double e = G4Log(energy);
253
254 if( e2 <= e1) xx = x1 + G4UniformRand()*(x2-x1);
255 else xx = x1 + (e-e1)*(x2-x1)/(e2-e1); // lin in energy log-scale
256 }
257 return xx;
258}
G4double GetXkr(G4int iEnergy, G4double prob)

Referenced by G4ANuElNucleusCcModel::SampleLVkr(), G4ANuElNucleusNcModel::SampleLVkr(), G4ANuMuNucleusCcModel::SampleLVkr(), G4ANuMuNucleusNcModel::SampleLVkr(), G4ANuTauNucleusCcModel::SampleLVkr(), G4ANuTauNucleusNcModel::SampleLVkr(), G4NuElNucleusCcModel::SampleLVkr(), G4NuElNucleusNcModel::SampleLVkr(), G4NuMuNucleusCcModel::SampleLVkr(), G4NuMuNucleusNcModel::SampleLVkr(), G4NuTauNucleusCcModel::SampleLVkr(), and G4NuTauNucleusNcModel::SampleLVkr().

◆ SetCutEnergy()

void G4NeutrinoNucleusModel::SetCutEnergy ( G4double  ec)
inline

Definition at line 98 of file G4NeutrinoNucleusModel.hh.

98{fCutEnergy=ec;};

◆ SetQEratioA()

void G4NeutrinoNucleusModel::SetQEratioA ( G4double  qea)
inline

Definition at line 137 of file G4NeutrinoNucleusModel.hh.

137{ fQEratioA = qea; };

◆ ThresholdEnergy()

G4double G4NeutrinoNucleusModel::ThresholdEnergy ( G4double  mI,
G4double  mF,
G4double  mP 
)
inline

Definition at line 131 of file G4NeutrinoNucleusModel.hh.

132 {
133 G4double w = std::sqrt(fW2);
134 return w + 0.5*( (mP+mF)*(mP+mF)-(w+mI)*(w+mI) )/mI;
135 };

Member Data Documentation

◆ f2p2h

◆ fANeMuQEratio

const G4double G4NeutrinoNucleusModel::fANeMuQEratio
staticprotected
Initial value:
=
{
1, 1, 1, 1, 1, 1, 1, 0.97506, 0.920938, 0.847671, 0.762973, 0.677684, 0.597685,
0.52538, 0.461466, 0.405329, 0.356154, 0.312944, 0.274984, 0.241341, 0.211654, 0.185322,
0.161991, 0.141339, 0.123078, 0.106952, 0.0927909, 0.0803262, 0.0693698, 0.0598207, 0.0514545,
0.044193, 0.0378696, 0.0324138, 0.0276955, 0.0236343, 0.0201497, 0.0171592, 0.014602, 0.0124182,
0.0105536, 0.00896322, 0.00761004, 0.00645821, 0.00547859, 0.00464595, 0.00393928,
0.00333961, 0.00283086, 0.00239927
}

Definition at line 218 of file G4NeutrinoNucleusModel.hh.

Referenced by CalculateQEratioA().

◆ fBarMass

const G4double G4NeutrinoNucleusModel::fBarMass = {1700., 1600., 1232., 939.57}
staticprotected

Definition at line 195 of file G4NeutrinoNucleusModel.hh.

Referenced by ClusterDecay().

◆ fBarPDG

const G4int G4NeutrinoNucleusModel::fBarPDG = {12224, 32224, 2224, 2212}
staticprotected

Definition at line 196 of file G4NeutrinoNucleusModel.hh.

Referenced by ClusterDecay().

◆ fBreak

◆ fCascade

◆ fClustNumber

const G4int G4NeutrinoNucleusModel::fClustNumber = 4
staticprotected

Definition at line 190 of file G4NeutrinoNucleusModel.hh.

Referenced by ClusterDecay(), and MesonDecay().

◆ fCosTheta

◆ fCosThetaPi

G4double G4NeutrinoNucleusModel::fCosThetaPi
protected

Definition at line 175 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel().

◆ fCutEnergy

G4double G4NeutrinoNucleusModel::fCutEnergy
protected

Definition at line 166 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), GetCutEnergy(), and SetCutEnergy().

◆ fDeExcitation

G4ExcitationHandler* G4NeutrinoNucleusModel::fDeExcitation
protected

Definition at line 181 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel().

◆ fDp

G4double G4NeutrinoNucleusModel::fDp
protected

Definition at line 173 of file G4NeutrinoNucleusModel.hh.

Referenced by FinalBarion(), G4NeutrinoNucleusModel(), and GetDp().

◆ fEindex

G4int G4NeutrinoNucleusModel::fEindex
protected

Definition at line 168 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), SampleQkr(), and SampleXkr().

◆ fEmu

◆ fEmuPi

G4double G4NeutrinoNucleusModel::fEmuPi
protected

Definition at line 175 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel().

◆ fEx

G4double G4NeutrinoNucleusModel::fEx
protected

Definition at line 175 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), and GetEx().

◆ fIndex

G4int G4NeutrinoNucleusModel::fIndex
protected

◆ fLVcpi

◆ fLVh

◆ fLVl

◆ fLVt

◆ fM1

G4double G4NeutrinoNucleusModel::fM1
protected

Definition at line 173 of file G4NeutrinoNucleusModel.hh.

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), G4NuTauNucleusNcModel::ApplyYourself(), G4NeutrinoNucleusModel(), GetM1(), G4ANuElNucleusCcModel::GetMinNuElEnergy(), G4ANuElNucleusNcModel::GetMinNuElEnergy(), G4NuElNucleusCcModel::GetMinNuElEnergy(), G4NuElNucleusNcModel::GetMinNuElEnergy(), G4ANuMuNucleusCcModel::GetMinNuMuEnergy(), G4ANuMuNucleusNcModel::GetMinNuMuEnergy(), G4ANuTauNucleusCcModel::GetMinNuMuEnergy(), G4ANuTauNucleusNcModel::GetMinNuMuEnergy(), GetMinNuMuEnergy(), G4NuMuNucleusCcModel::GetMinNuMuEnergy(), G4NuMuNucleusNcModel::GetMinNuMuEnergy(), G4NuTauNucleusCcModel::GetMinNuMuEnergy(), G4NuTauNucleusNcModel::GetMinNuMuEnergy(), G4ANuElNucleusCcModel::SampleLVkr(), G4ANuElNucleusNcModel::SampleLVkr(), G4ANuMuNucleusCcModel::SampleLVkr(), G4ANuMuNucleusNcModel::SampleLVkr(), G4ANuTauNucleusCcModel::SampleLVkr(), G4ANuTauNucleusNcModel::SampleLVkr(), G4NuElNucleusCcModel::SampleLVkr(), G4NuElNucleusNcModel::SampleLVkr(), G4NuMuNucleusCcModel::SampleLVkr(), G4NuMuNucleusNcModel::SampleLVkr(), G4NuTauNucleusCcModel::SampleLVkr(), and G4NuTauNucleusNcModel::SampleLVkr().

◆ fM2

G4double G4NeutrinoNucleusModel::fM2
protected

Definition at line 173 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel().

◆ fMesMass

const G4double G4NeutrinoNucleusModel::fMesMass = {1260., 980., 770., 139.57}
staticprotected

Definition at line 192 of file G4NeutrinoNucleusModel.hh.

Referenced by ClusterDecay(), and MesonDecay().

◆ fMesPDG

const G4int G4NeutrinoNucleusModel::fMesPDG = {20213, 9000211, 213, 211}
staticprotected

Definition at line 193 of file G4NeutrinoNucleusModel.hh.

Referenced by MesonDecay().

◆ fMinNuEnergy

◆ fMpi

◆ fMr

◆ fMt

◆ fMu

◆ fNbin

◆ fNeMuQEratio

const G4double G4NeutrinoNucleusModel::fNeMuQEratio
staticprotected
Initial value:
=
{
1, 1, 1, 1, 1, 1, 1, 0.977592, 0.926073, 0.858783, 0.783874, 0.706868, 0.63113, 0.558681,
0.490818, 0.428384, 0.371865, 0.321413, 0.276892, 0.237959, 0.204139, 0.1749, 0.149706, 0.128047,
0.109456, 0.093514, 0.0798548, 0.0681575, 0.0581455, 0.0495804, 0.0422578, 0.036002, 0.0306614,
0.0261061, 0.0222231, 0.0189152, 0.0160987, 0.0137011, 0.0116604, 0.00992366, 0.00844558, 0.00718766,
0.00611714, 0.00520618, 0.00443105, 0.00377158, 0.00321062, 0.0027335, 0.00232774, 0.00198258
}

Definition at line 219 of file G4NeutrinoNucleusModel.hh.

Referenced by CalculateQEratioA().

◆ fNuEnergy

◆ fNuMuEnergy

const G4double G4NeutrinoNucleusModel::fNuMuEnergy
staticprotected
Initial value:
=
{
0.112103, 0.117359, 0.123119, 0.129443, 0.136404,
0.144084, 0.152576, 0.161991, 0.172458, 0.184126,
0.197171, 0.211801, 0.228261, 0.24684, 0.267887,
0.291816, 0.319125, 0.350417, 0.386422, 0.428032,
0.47634, 0.532692, 0.598756, 0.676612, 0.768868,
0.878812, 1.01062, 1.16963, 1.36271, 1.59876,
1.88943, 2.25002, 2.70086, 3.26916, 3.99166,
4.91843, 6.11836, 7.6872, 9.75942, 12.5259,
16.2605, 21.3615, 28.4141, 38.2903, 52.3062,
72.4763, 101.93, 145.6, 211.39, 312.172
}

Definition at line 201 of file G4NeutrinoNucleusModel.hh.

Referenced by GetEnergyIndex(), and GetNuMuQeTotRat().

◆ fNuMuEnergyLogVector

const G4double G4NeutrinoNucleusModel::fNuMuEnergyLogVector
staticprotected
Initial value:
= {
115.603, 133.424, 153.991, 177.729, 205.126, 236.746, 273.24, 315.361, 363.973, 420.08, 484.836, 559.573, 645.832,
745.387, 860.289, 992.903, 1145.96, 1322.61, 1526.49, 1761.8, 2033.38, 2346.83, 2708.59, 3126.12, 3608.02, 4164.19,
4806.1, 5546.97, 6402.04, 7388.91, 8527.92, 9842.5, 11359.7, 13110.8, 15131.9, 17464.5, 20156.6, 23263.8, 26849.9,
30988.8, 35765.7, 41279, 47642.2, 54986.3, 63462.4, 73245.2, 84536, 97567.2, 112607, 129966 }

Definition at line 206 of file G4NeutrinoNucleusModel.hh.

Referenced by SampleQkr(), and SampleXkr().

◆ fNuMuQarrayKR

◆ fNuMuQdistrKR

◆ fNuMuQeTotRat

const G4double G4NeutrinoNucleusModel::fNuMuQeTotRat
staticprotected
Initial value:
=
{
0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98,
0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98,
0.97, 0.96, 0.95, 0.93,
0.917794, 0.850239, 0.780412, 0.709339, 0.638134, 0.568165,
0.500236, 0.435528, 0.375015, 0.319157, 0.268463, 0.2232, 0.183284,
0.148627, 0.119008, 0.0940699, 0.0733255, 0.0563819, 0.0427312, 0.0319274,
0.0235026, 0.0170486, 0.0122149, 0.00857825, 0.00594018, 0.00405037
}

Definition at line 202 of file G4NeutrinoNucleusModel.hh.

Referenced by GetNuMuQeTotRat().

◆ fNuMuResQ

const G4double G4NeutrinoNucleusModel::fNuMuResQ[50][50]
staticprotected

Definition at line 198 of file G4NeutrinoNucleusModel.hh.

◆ fNuMuXarrayKR

◆ fNuMuXdistrKR

◆ fOnePionEnergy

const G4double G4NeutrinoNucleusModel::fOnePionEnergy
staticprotected
Initial value:
=
{
0.275314, 0.293652, 0.31729, 0.33409, 0.351746, 0.365629, 0.380041, 0.400165, 0.437941, 0.479237,
0.504391, 0.537803, 0.588487, 0.627532, 0.686839, 0.791905, 0.878332, 0.987405, 1.08162, 1.16971,
1.2982, 1.40393, 1.49854, 1.64168, 1.7524, 1.87058, 2.02273, 2.15894, 2.3654, 2.55792, 2.73017,
3.03005, 3.40733, 3.88128, 4.53725, 5.16786, 5.73439, 6.53106, 7.43879, 8.36214, 9.39965, 10.296,
11.5735, 13.1801, 15.2052, 17.5414, 19.7178, 22.7462, 25.9026, 29.4955, 33.5867, 39.2516, 46.4716,
53.6065, 63.4668, 73.2147, 85.5593, 99.9854
}

Definition at line 203 of file G4NeutrinoNucleusModel.hh.

Referenced by GetNuMuOnePionProb(), GetNuMuQeTotRat(), and GetOnePionIndex().

◆ fOnePionIndex

G4int G4NeutrinoNucleusModel::fOnePionIndex
protected

◆ fOnePionProb

const G4double G4NeutrinoNucleusModel::fOnePionProb
staticprotected
Initial value:
=
{
0.0019357, 0.0189361, 0.0378722, 0.0502758, 0.0662559, 0.0754581, 0.0865008, 0.0987275, 0.124112,
0.153787, 0.18308, 0.213996, 0.245358, 0.274425, 0.301536, 0.326612, 0.338208, 0.337806, 0.335948,
0.328092, 0.313557, 0.304965, 0.292169, 0.28481, 0.269474, 0.254138, 0.247499, 0.236249, 0.221654,
0.205492, 0.198781, 0.182216, 0.162251, 0.142878, 0.128631, 0.116001, 0.108435, 0.0974843, 0.082092,
0.0755204, 0.0703121, 0.0607066, 0.0554278, 0.0480401, 0.0427023, 0.0377123, 0.0323248, 0.0298584,
0.0244296, 0.0218526, 0.019121, 0.016477, 0.0137309, 0.0137963, 0.0110371, 0.00834028, 0.00686127, 0.00538226
}

Definition at line 204 of file G4NeutrinoNucleusModel.hh.

Referenced by GetNuMuOnePionProb().

◆ fPDGencoding

◆ fPrecoInterface

G4GeneratorPrecompoundInterface* G4NeutrinoNucleusModel::fPrecoInterface
protected

Definition at line 179 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), and ~G4NeutrinoNucleusModel().

◆ fPreCompound

G4PreCompoundModel* G4NeutrinoNucleusModel::fPreCompound
protected

Definition at line 180 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), and RecoilDeexcitation().

◆ fProton

◆ fQ2

◆ fQEnergy

const G4double G4NeutrinoNucleusModel::fQEnergy
staticprotected
Initial value:
=
{
0.12, 0.1416, 0.167088, 0.197164, 0.232653, 0.274531, 0.323946, 0.382257, 0.451063, 0.532254,
0.62806, 0.741111, 0.874511, 1.03192, 1.21767, 1.43685, 1.69548, 2.00067, 2.36079, 2.78573,
3.28716, 3.87885, 4.57705, 5.40092, 6.37308, 7.52024, 8.87388, 10.4712, 12.356, 14.5801,
17.2045, 20.3013, 23.9555, 28.2675, 33.3557, 39.3597, 46.4444, 54.8044, 64.6692, 76.3097,
90.0454, 106.254, 125.379, 147.947, 174.578, 206.002, 243.082, 286.837, 338.468, 399.392
}

Definition at line 217 of file G4NeutrinoNucleusModel.hh.

Referenced by CalculateQEratioA().

◆ fQEratioA

G4double G4NeutrinoNucleusModel::fQEratioA
protected

◆ fQindex

G4int G4NeutrinoNucleusModel::fQindex
protected

Definition at line 168 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), and GetQkr().

◆ fQtransfer

◆ fRecoil

◆ fResMass

const G4double G4NeutrinoNucleusModel::fResMass
staticprotected
Initial value:
=
{2190., 1920., 1700., 1600., 1440., 1232. }

Definition at line 188 of file G4NeutrinoNucleusModel.hh.

◆ fResNumber

const G4int G4NeutrinoNucleusModel::fResNumber = 6
staticprotected

Definition at line 187 of file G4NeutrinoNucleusModel.hh.

◆ fSecID

◆ fSin2tW

G4double G4NeutrinoNucleusModel::fSin2tW
protected

Definition at line 165 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel().

◆ fString

◆ fTr

G4double G4NeutrinoNucleusModel::fTr
protected

Definition at line 173 of file G4NeutrinoNucleusModel.hh.

Referenced by FinalBarion(), G4NeutrinoNucleusModel(), and GetTr().

◆ fW2

G4double G4NeutrinoNucleusModel::fW2
protected

Definition at line 173 of file G4NeutrinoNucleusModel.hh.

Referenced by G4ANuElNucleusCcModel::ApplyYourself(), G4ANuElNucleusNcModel::ApplyYourself(), G4ANuMuNucleusCcModel::ApplyYourself(), G4ANuMuNucleusNcModel::ApplyYourself(), G4ANuTauNucleusCcModel::ApplyYourself(), G4ANuTauNucleusNcModel::ApplyYourself(), G4NuElNucleusCcModel::ApplyYourself(), G4NuElNucleusNcModel::ApplyYourself(), G4NuMuNucleusCcModel::ApplyYourself(), G4NuMuNucleusNcModel::ApplyYourself(), G4NuTauNucleusCcModel::ApplyYourself(), G4NuTauNucleusNcModel::ApplyYourself(), G4NeutrinoNucleusModel(), GetW2(), G4ANuElNucleusCcModel::SampleLVkr(), G4ANuElNucleusNcModel::SampleLVkr(), G4ANuMuNucleusCcModel::SampleLVkr(), G4ANuMuNucleusNcModel::SampleLVkr(), G4ANuTauNucleusCcModel::SampleLVkr(), G4ANuTauNucleusNcModel::SampleLVkr(), G4NuElNucleusCcModel::SampleLVkr(), G4NuElNucleusNcModel::SampleLVkr(), G4NuMuNucleusCcModel::SampleLVkr(), G4NuMuNucleusNcModel::SampleLVkr(), G4NuTauNucleusCcModel::SampleLVkr(), G4NuTauNucleusNcModel::SampleLVkr(), G4ANuElNucleusCcModel::ThresholdEnergy(), G4ANuElNucleusNcModel::ThresholdEnergy(), G4ANuMuNucleusCcModel::ThresholdEnergy(), G4ANuMuNucleusNcModel::ThresholdEnergy(), G4ANuTauNucleusCcModel::ThresholdEnergy(), G4ANuTauNucleusNcModel::ThresholdEnergy(), ThresholdEnergy(), G4NuElNucleusCcModel::ThresholdEnergy(), G4NuElNucleusNcModel::ThresholdEnergy(), G4NuMuNucleusCcModel::ThresholdEnergy(), G4NuMuNucleusNcModel::ThresholdEnergy(), G4NuTauNucleusCcModel::ThresholdEnergy(), and G4NuTauNucleusNcModel::ThresholdEnergy().

◆ fW2pi

G4double G4NeutrinoNucleusModel::fW2pi
protected

Definition at line 173 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel().

◆ fXindex

G4int G4NeutrinoNucleusModel::fXindex
protected

Definition at line 168 of file G4NeutrinoNucleusModel.hh.

Referenced by G4NeutrinoNucleusModel(), GetXkr(), and SampleQkr().

◆ fXsample

◆ theMuonMinus

G4ParticleDefinition* G4NeutrinoNucleusModel::theMuonMinus
protected

◆ theMuonPlus

G4ParticleDefinition* G4NeutrinoNucleusModel::theMuonPlus
protected

The documentation for this class was generated from the following files: