Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLElasticChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
39#include "G4INCLRandom.hh"
43#include "G4INCLGlobals.hh"
44
45namespace G4INCL {
46
48 :particle1(p1), particle2(p2)
49 {
50 }
51
53 {
54 }
55
57 {
58 ParticleType p1TypeOld = particle1->getType();
59 ParticleType p2TypeOld = particle2->getType();
60
61 /* Concerning the way we calculate the lab momentum, see the considerations
62 * in CrossSections::elasticNNLegacy().
63 */
64 const G4double s = KinematicsUtils::squareTotalEnergyInCM(particle1, particle2);
66
67 const G4int isospin = ParticleTable::getIsospin(particle1->getType()) +
69
70 // Calculate the outcome of the channel:
71 G4double psq = particle1->getMomentum().mag2();
72 G4double pnorm = std::sqrt(psq);
74 G4double btmax = 4.0 * psq * b;
75 G4double z = std::exp(-btmax);
76 G4double ranres = Random::shoot();
77 G4double y = 1.0 - ranres * (1.0 - z);
78 G4double T = std::log(y)/b;
79 G4int iexpi = 0;
80 G4double apt = 1.0;
81
82 // Handle np case
83 if((particle1->getType() == Proton && particle2->getType() == Neutron) ||
84 (particle1->getType() == Neutron && particle2->getType() == Proton)) {
85 if(pl > 800.0) {
86 const G4double x = 0.001 * pl; // Transform to GeV
87 apt = (800.0/pl)*(800.0/pl);
88 G4double cpt = std::max(6.23 * std::exp(-1.79*x), 0.3);
89 G4double alphac = 100.0 * 1.0e-6;
90 G4double aaa = (1 + apt) * (1 - std::exp(-btmax))/b;
91 G4double argu = psq * alphac;
92
93 if(argu >= 8) {
94 argu = 0.0;
95 } else {
96 argu = std::exp(-4.0 * argu);
97 }
98
99 G4double aac = cpt * (1.0 - argu)/alphac;
100 G4double fracpn = aaa/(aac + aaa);
101 if(Random::shoot() > fracpn) {
102 z = std::exp(-4.0 * psq *alphac);
103 iexpi = 1;
104 y = 1.0 - ranres*(1.0 - z);
105 T = std::log(y)/alphac;
106 }
107 }
108 }
109
110 G4double ctet = 1.0 + 0.5*T/psq;
111 if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet);
112 G4double stet = std::sqrt(1.0 - ctet*ctet);
113 G4double rndm = Random::shoot();
114
115 G4double fi = Math::twoPi * rndm;
116 G4double cfi = std::cos(fi);
117 G4double sfi = std::sin(fi);
118
119 G4double xx = particle1->getMomentum().perp2();
120 G4double zz = std::pow(particle1->getMomentum().getZ(), 2);
121
122 if(xx >= (zz * 1.0e-8)) {
123 ThreeVector p = particle1->getMomentum();
124 G4double yn = std::sqrt(xx);
125 G4double zn = yn * pnorm;
126 G4double ex[3], ey[3], ez[3];
127 ez[0] = p.getX() / pnorm;
128 ez[1] = p.getY() / pnorm;
129 ez[2] = p.getZ() / pnorm;
130
131 // Vector Ex is chosen arbitrarily:
132 ex[0] = p.getY() / yn;
133 ex[1] = -p.getX() / yn;
134 ex[2] = 0.0;
135
136 ey[0] = p.getX() * p.getZ() / zn;
137 ey[1] = p.getY() * p.getZ() / zn;
138 ey[2] = -xx/zn;
139
140 G4double pX = (ex[0]*cfi*stet + ey[0]*sfi*stet + ez[0]*ctet) * pnorm;
141 G4double pY = (ex[1]*cfi*stet + ey[1]*sfi*stet + ez[1]*ctet) * pnorm;
142 G4double pZ = (ex[2]*cfi*stet + ey[2]*sfi*stet + ez[2]*ctet) * pnorm;
143
144 ThreeVector p1momentum = ThreeVector(pX, pY, pZ);
145 particle1->setMomentum(p1momentum);
146 particle2->setMomentum(-p1momentum);
147 } else { // if(xx < (zz * 1.0e-8)) {
148 G4double momZ = particle1->getMomentum().getZ();
149 G4double pX = momZ * cfi * stet;
150 G4double pY = momZ * sfi * stet;
151 G4double pZ = momZ * ctet;
152
153 ThreeVector p1momentum(pX, pY, pZ);
154 particle1->setMomentum(p1momentum);
155 particle2->setMomentum(-p1momentum);
156 }
157
158 // Handle backward scattering here.
159
160 if((particle1->getType() == Proton && particle2->getType() == Neutron) ||
161 (particle1->getType() == Neutron && particle2->getType() == Proton)) {
162 rndm = Random::shoot();
163 apt = 1.0;
164 if(pl > 800.0) {
165 apt = std::pow(800.0/pl, 2);
166 }
167 if(iexpi == 1 || rndm > 1.0/(1.0 + apt)) {
168 particle1->setType(p2TypeOld);
169 particle2->setType(p1TypeOld);
170 }
171 }
172
173 // Note: there is no need to update the kinetic energies of the particles,
174 // as this is elastic scattering.
175
176 fs->addModifiedParticle(particle1);
177 fs->addModifiedParticle(particle2);
178
179 }
180
181}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
ElasticChannel(Particle *p1, Particle *p2)
void fillFinalState(FinalState *fs)
void addModifiedParticle(Particle *p)
const G4INCL::ThreeVector & getMomentum() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4double getY() const
G4double getZ() const
G4double perp2() const
G4double mag2() const
G4double getX() const
G4double calculateNNAngularSlope(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
const G4double twoPi
G4int sign(const T t)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass
G4double shoot()
Definition: G4INCLRandom.cc:93