Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLCrossSectionsMultiPions.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLLogger.hh"
42// #include <cassert>
43
44namespace G4INCL {
45
46 template<G4int N>
48 static G4double eval(const G4double pLab, const G4double oneOverThreshold, HornerCoefficients<N> const &coeffs) {
49 const G4double pMeV = pLab*1E3;
51 const G4double xrat=ekin*oneOverThreshold;
52 const G4double x=std::log(xrat);
53 return HornerEvaluator<N>::eval(x, coeffs) * x * std::exp(-0.5*x);
54 }
55 };
56
59
60 const G4double CrossSectionsMultiPions::s11pzOOT = 0.0035761542037692665889;
61 const G4double CrossSectionsMultiPions::s01ppOOT = 0.003421025623481919853;
62 const G4double CrossSectionsMultiPions::s01pzOOT = 0.0035739814152966403123;
63 const G4double CrossSectionsMultiPions::s11pmOOT = 0.0034855350296270480281;
64 const G4double CrossSectionsMultiPions::s12pmOOT = 0.0016672224074691565119;
65 const G4double CrossSectionsMultiPions::s12ppOOT = 0.0016507643038726931312;
66 const G4double CrossSectionsMultiPions::s12zzOOT = 0.0011111111111111111111;
68 const G4double CrossSectionsMultiPions::s02pmOOT = 0.0016661112962345883443;
69 const G4double CrossSectionsMultiPions::s12mzOOT = 0.0017047391749062392793;
70
72 s11pzHC(-2.228000000000294018,8.7560000000005723725,-0.61000000000023239325,-5.4139999999999780324,3.3338333333333348023,-0.75835000000000022049,0.060623611111111114688),
73 s01ppHC(2.0570000000126518344,-6.029000000012135826,36.768500000002462784,-45.275666666666553533,25.112666666666611953,-7.2174166666666639187,1.0478875000000000275,-0.060804365079365080846),
74 s01pzHC(0.18030000000000441851,7.8700999999999953598,-4.0548999999999990425,0.555199999999999959),
75 s11pmHC(0.20590000000000031866,3.3450999999999993936,-1.4401999999999997825,0.17076666666666664973),
76 s12pmHC(-0.77235999999999901328,4.2626599999999991117,-1.9008899999999997323,0.30192266666666663379,-0.012270833333333331986),
77 s12ppHC(-0.75724999999999975664,2.0934399999999998565,-0.3803099999999999814),
78 s12zzHC(-0.89599999999996965072,7.882999999999978632,-7.1049999999999961928,1.884333333333333089),
79 s02pzHC(-1.0579999999999967036,11.113999999999994089,-8.5259999999999990196,2.0051666666666666525),
80 s02pmHC(2.4009000000012553286,-7.7680000000013376183,20.619000000000433505,-16.429666666666723928,5.2525708333333363472,-0.58969166666666670206),
81 s12mzHC(-0.21858699999999976269,1.9148999999999999722,-0.31727500000000001065,-0.027695000000000000486)
82 {
83 }
84
85 G4double CrossSectionsMultiPions::NNElastic(Particle const * const part1, Particle const * const part2) {
86
87 /* The NN cross section is parametrised as a function of the lab momentum
88 * of one of the nucleons. For NDelta or DeltaDelta, the physical
89 * assumption is that the cross section is the same as NN *for the same
90 * total CM energy*. Thus, we calculate s from the particles involved, and
91 * we convert this value to the lab momentum of a nucleon *as if this were
92 * an NN collision*.
93 */
95
96 if(part1->isNucleon() && part2->isNucleon()) { // NN
97 const G4int i = ParticleTable::getIsospin(part1->getType())
99 return NNElasticFixed(s, i);
100 }
101 else { // Nucleon-Delta and Delta-Delta
103 if (plab < 0.440) {
104 return 34.*std::pow(plab/0.4, (-2.104));
105 }
106 else if (plab < 0.800) {
107 return 23.5+1000.*std::pow(plab-0.7, 4);
108 }
109 else if (plab <= 2.0) {
110 return 1250./(50.+plab)-4.*std::pow(plab-1.3, 2);
111 }
112 else {
113 return 77./(plab+1.5);
114 }
115 }
116 }
117
119
120 /* From NNElastic, with isospin fixed and for NN only.
121 */
122
124 G4double sigma = 0.;
125
126 if (i == 0) { // pn
127 if (plab < 0.446) {
128 G4double alp=std::log(plab);
129 sigma = 6.3555*std::exp(-3.2481*alp-0.377*alp*alp);
130 }
131 else if (plab < 0.851) {
132 sigma = 33.+196.*std::pow(std::fabs(plab-0.95),2.5);
133 }
134 else if (plab <= 2.0) {
135 sigma = 31./std::sqrt(plab);
136 }
137 else {
138 sigma = 77./(plab+1.5);
139 }
140 //if(plab < 0.9 && plab > 0.802) sigma -= 0.1387*std::exp(-std::pow((plab-0.861),2)/0.0006861); //correction if totalcx-sumcx < 0.1
141 //if(plab < 1.4 && plab > 1.31) sigma -= 0.1088*std::exp(-std::pow((plab-1.35),2)/0.00141); //correction if totalcx-sumcx < 0.1
142 return sigma;
143 }
144 else { // pp and nn
145 if (plab < 0.440) {
146 return 34.*std::pow(plab/0.4, (-2.104));
147 }
148 else if (plab < 0.8067) {
149 return 23.5+1000.*std::pow(plab-0.7, 4);
150 }
151 else if (plab <= 2.0) {
152 return 1250./(50.+plab)-4.*std::pow(plab-1.3, 2);
153 }
154 else if (plab <= 3.0956) {
155 return 77./(plab+1.5);
156 }
157 else {
158 G4double alp=std::log(plab);
159 return 11.2+25.5*std::pow(plab, -1.12)+0.151*std::pow(alp, 2)-1.62*alp;
160 }
161 }
162 }
163
164 G4double CrossSectionsMultiPions::NNTot(Particle const * const part1, Particle const * const part2) {
165
168
169 if(part1->isNucleon() && part2->isNucleon()) { // NN
170 const G4double s = KinematicsUtils::squareTotalEnergyInCM(part1, part2);
171 return NNTotFixed(s, i);
172 }
173 else if (part1->isDelta() && part2->isDelta()) { // Delta-Delta
174 return elastic(part1, part2);
175 }
176 else { // Nucleon-Delta
177 return NDeltaToNN(part1, part2) + elastic(part1, part2);
178 }
179 }
180
182
183 /* From NNTot, with isospin fixed and for NN only.
184 */
185
187
188 if (i == 0) { // pn
189 if (plab < 0.446) {
190 G4double alp=std::log(plab);
191 return 6.3555*std::exp(-3.2481*alp-0.377*std::pow(alp, 2));
192 }
193 else if (plab < 1.0) {
194 return 33.+196.*std::sqrt(std::pow(std::fabs(plab-0.95),5));
195 }
196 else if (plab < 1.924) {
197 return 24.2+8.9*plab;
198 }
199 else {
200 G4double alp=std::log(plab);
201 return 48.9-33.7*std::pow(plab, -3.08)+0.619*std::pow(alp, 2)-5.12*alp;
202 }
203 }
204 else { // pp and nn
205 if (plab < 0.440) {
206 return 34.*std::pow(plab/0.4, (-2.104));
207 }
208 else if (plab < 0.8734) {
209 return 23.5+1000.*std::pow(plab-0.7, 4);
210 }
211 else if (plab < 1.5) {
212 return 23.5+24.6/(1.+std::exp(-10.*(plab-1.2)));
213 }
214 else if (plab < 3.0044) {
215 return 41.+60.*(plab-0.9)*std::exp(-1.2*plab);
216 }
217 else {
218 G4double alp=std::log(plab);
219 return 45.6+219.*std::pow(plab, -4.23)+0.41*std::pow(alp, 2)-3.41*alp;
220 }
221 }
222 }
223
225
226 const G4double s = ener*ener;
227 G4double sincl;
228
229 if (iso != 0) {
230 if(s>=4074595.287720512986) { // plab>800 MeV/c
231 sincl = NNTotFixed(s, 2)-NNElasticFixed(s, 2);
232 }
233 else {
234 sincl = 0. ;
235 }
236 } else {
237 if(s>=4074595.287720512986) { // plab>800 MeV/c
238 sincl = 2*(NNTotFixed(s, 0)-NNElasticFixed(s, 0))-(NNTotFixed(s, 2)-NNElasticFixed(s, 2));
239 }
240 else {
241 return 0. ;
242 }
243 }
244 if (sincl < 0.) sincl = 0.;
245 return sincl;
246 }
247
249
250 /* Article J. Physique 48 (1987)1901-1924 "Energy dependence of
251 nucleon-cucleon inelastic total cross-sections."
252 J. Bystricky, P. La France, F. Lehar, F. Perrot, T. Siemiarczuk & P. Winternitz
253 S11PZ= section pp->pp pi0
254 S01PP= section pp->pn pi+
255 S01PZ= section pn->pn pi0
256 S11PM= section pn->pp pi-
257 S= X-Section, 1st number : 1 if pp and 0 if pn
258 2nd number = number of pions, PP= pi+; PZ= pi0 ; PM= pi-
259 */
260
261 const G4double s = ener*ener;
263
264 G4double snnpit1=0.;
265 G4double snnpit=0.;
266 G4double s11pz=0.;
267 G4double s01pp=0.;
268 G4double s01pz=0.;
269 G4double s11pm=0.;
270
271 if ((iso != 0) && (plab < 2.1989)) {
272 snnpit = xsiso - NNTwoPi(ener, iso, xsiso);
273 if (snnpit < 1.e-8) snnpit=0.;
274 return snnpit;
275 }
276 else if ((iso == 0) && (plab < 1.7369)) {
277 snnpit = xsiso;
278 if (snnpit < 1.e-8) snnpit=0.;
279 return snnpit;
280 }
281
282//s11pz
283 if (plab > 18.) {
284 s11pz=55.185/std::pow((0.1412*plab+5),2);
285 }
286 else if (plab > 13.9) {
287 G4double alp=std::log(plab);
288 s11pz=6.67-13.3*std::pow(plab, -6.18)+0.456*alp*alp-3.29*alp;
289 }
290 else if (plab >= 0.7765) {
292 s11pz=b*b;
293 }
294//s01pp
295 if (plab >= 0.79624) {
297 s01pp=b*b;
298 }
299
300// channel T=1
301 snnpit1=s11pz+s01pp;
302 if (snnpit1 < 1.e-8) snnpit1=0.;
303 if (iso != 0) {
304 return snnpit1;
305 }
306
307//s01pz
308 if (plab > 4.5) {
309 s01pz=15289.4/std::pow((11.573*plab+5),2);
310 }
311 else if (plab >= 0.777) {
313 s01pz=b*b;
314 }
315//s11pm
316 if (plab > 14.) {
317 s11pm=46.68/std::pow((0.2231*plab+5),2);
318 }
319 else if (plab >= 0.788) {
321 s11pm=b*b;
322 }
323
324// channel T=0
325// snnpit=s01pz+2*s11pm-snnpit1; //modif 2*(s01pz+2*s11pm)-snnpit1;
326 snnpit = 2*(s01pz+2*s11pm)-snnpit1;
327 if (snnpit < 1.e-8) snnpit=0.;
328 return snnpit;
329 }
330
332
333 /* Article J. Physique 48 (1987)1901-1924 "Energy dependence of nucleon-cucleon inelastic total cross-sections."
334 J. Bystricky, P. La France, F. Lehar, F. Perrot, T. Siemiarczuk & P. Winternitz
335 S12PM : pp -> pp Pi+ Pi-
336 S12ZZ : pp -> pp Pi0 Pi0
337 S12PP : pp -> nn Pi+ Pi+
338 S02PZ : pp -> pn Pi+ Pi0
339 S02PM : pn -> pn Pi+ Pi-
340 S12MZ : pn -> pp Pi- Pi0
341 */
342
343 const G4double s = ener*ener;
345
346 G4double snn2pit=0.;
347 G4double s12pm=0.;
348 G4double s12pp=0.;
349 G4double s12zz=0.;
350 G4double s02pz=0.;
351 G4double s02pm=0.;
352 G4double s12mz=0.;
353
354 if (iso==0 && plab<3.33) {
355 snn2pit = xsiso - NNOnePiOrDelta(ener, iso, xsiso);
356 if (snn2pit < 1.e-8) snn2pit=0.;
357 return snn2pit;
358 }
359
360 if (iso != 0) {
361//s12pm
362 if (plab > 15.) {
363 s12pm=25.977/plab;
364 }
365 else if (plab >= 1.3817) {
367 s12pm=b*b;
368 }
369//s12pp
370 if (plab > 10.) {
371 s12pp=141.505/std::pow((-0.1016*plab-7),2);
372 }
373 else if (plab >= 1.5739) {
375 s12pp=b*b;
376 }
377 }
378//s12zz
379 if (plab > 4.) {
380 s12zz=97.355/std::pow((1.1579*plab+5),2);
381 }
382 else if (plab >= 1.72207) {
384 s12zz=b*b;
385 }
386//s02pz
387 if (plab > 4.5) {
388 s02pz=178.082/std::pow((0.2014*plab+5),2);
389 }
390 else if (plab >= 1.5656) {
392 s02pz=b*b;
393 }
394
395// channel T=1
396 if (iso != 0) {
397 snn2pit=s12pm+s12pp+s12zz+s02pz;
398 if (snn2pit < 1.e-8) snn2pit=0.;
399 return snn2pit;
400 }
401
402//s02pm
403 if (plab > 5.) {
404 s02pm=135.826/std::pow(plab,2);
405 }
406 else if (plab >= 1.21925) {
408 s02pm=b*b;
409 }
410//s12mz
411 if (plab >= 1.29269) {
413 s12mz=b*b;
414 }
415
416// channel T=0
417// snn2pit=3*(0.5*s02pm+0.5*s12mz-0.5*s02pz-s12zz); //modif snn2pit=3*(s02pm+0.5*s12mz-0.5*s02pz-s12zz);
418 snn2pit=3*(s02pm+0.5*s12mz-0.5*s02pz-s12zz);
419 if (snn2pit < 1.e-8) snn2pit=0.;
420 return snn2pit;
421 }
422
423 G4double CrossSectionsMultiPions::NNThreePi(const G4double ener, const G4int iso, const G4double xsiso, const G4double xs1pi, const G4double xs2pi) {
424
425 const G4double s = ener*ener;
427
428 G4double snn3pit=0.;
429
430 if (iso == 0) {
431// channel T=0
432 if (plab > 7.2355) {
433 return 46.72/std::pow((plab - 5.8821),2);
434 }
435 else {
436 snn3pit=xsiso-xs1pi-xs2pi;
437 if (snn3pit < 1.e-8) snn3pit=0.;
438 return snn3pit;
439 }
440 }
441 else {
442// channel T=1
443 if (plab > 7.206) {
444 return 5592.92/std::pow((plab+14.9764),2);
445 }
446 else if (plab > 2.1989){
447 snn3pit=xsiso-xs1pi-xs2pi;
448 if (snn3pit < 1.e-8) snn3pit=0.;
449 return snn3pit;
450 }
451 else return snn3pit;
452 }
453 }
454
455 G4double CrossSectionsMultiPions::NNOnePi(Particle const * const particle1, Particle const * const particle2) {
456 // Cross section for nucleon-nucleon directly producing one pion
457
458 const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
459 if (iso!=0) // If pp or nn we choose to always pass by the N-N to N-Delta channel
460 return 0.;
461
462 const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
463
464 const G4double xsiso2=NNInelasticIso(ener, 2);
465 const G4double xsiso0=NNInelasticIso(ener, 0);
466 return 0.25*(NNOnePiOrDelta(ener, 0, xsiso0)+ NNOnePiOrDelta(ener, 2, xsiso2));
467 }
468
469 G4double CrossSectionsMultiPions::NNOnePiOrDelta(Particle const * const particle1, Particle const * const particle2) {
470 // Cross section for nucleon-nucleon directly producing one pion or producing a nucleon-delta pair
471 const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
472 const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
473
474 const G4double xsiso2=NNInelasticIso(ener, 2);
475 if (iso != 0)
476 return NNOnePiOrDelta(ener, iso, xsiso2);
477 else {
478 const G4double xsiso0=NNInelasticIso(ener, 0);
479 return 0.5*(NNOnePiOrDelta(ener, 0, xsiso0)+ NNOnePiOrDelta(ener, 2, xsiso2));
480 }
481 }
482
483 G4double CrossSectionsMultiPions::NNTwoPi(Particle const * const particle1, Particle const * const particle2) {
484 //
485 // Nucleon-Nucleon producing one pion cross sections
486 //
487 const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
488 const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
489
490
491 const G4double xsiso2=NNInelasticIso(ener, 2);
492 if (iso != 0) {
493 return NNTwoPi(ener, 2, xsiso2);
494 }
495 else {
496 const G4double xsiso0=NNInelasticIso(ener, 0);
497 return 0.5*(NNTwoPi(ener, 0, xsiso0)+ NNTwoPi(ener, 2, xsiso2));
498 }
499 return 0.0; // Should never reach this point
500 }
501
502 G4double CrossSectionsMultiPions::NNThreePi(Particle const * const particle1, Particle const * const particle2) {
503 //
504 // Nucleon-Nucleon producing one pion cross sections
505 //
506
507 const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
508 const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
509
510
511 const G4double xsiso2=NNInelasticIso(ener, 2);
512 const G4double xs1pi2=NNOnePiOrDelta(ener, 2, xsiso2);
513 const G4double xs2pi2=NNTwoPi(ener, 2, xsiso2);
514 if (iso != 0)
515 return NNThreePi(ener, 2, xsiso2, xs1pi2, xs2pi2);
516 else {
517 const G4double xsiso0=NNInelasticIso(ener, 0);
518 const G4double xs1pi0=NNOnePiOrDelta(ener, 0, xsiso0);
519 const G4double xs2pi0=NNTwoPi(ener, 0, xsiso0);
520 return 0.5*(NNThreePi(ener, 0, xsiso0, xs1pi0, xs2pi0)+ NNThreePi(ener, 2, xsiso2, xs1pi2, xs2pi2));
521 }
522 }
523
524 G4double CrossSectionsMultiPions::NNFourPi(Particle const * const particle1, Particle const * const particle2) {
525 const G4double s = KinematicsUtils::squareTotalEnergyInCM(particle1, particle2);
526 if(s<6.25E6)
527 return 0.;
528 const G4double sigma = NNTot(particle1, particle2) - NNElastic(particle1, particle2) - NNOnePiOrDelta(particle1, particle2) - NNTwoPi(particle1, particle2) - NNThreePi(particle1, particle2);
529 return ((sigma>1.e-9) ? sigma : 0.);
530 }
531
532 G4double CrossSectionsMultiPions::NNToxPiNN(const G4int xpi, Particle const * const particle1, Particle const * const particle2) {
533 //
534 // Nucleon-Nucleon producing xpi pions cross sections
535 //
536// assert(xpi>0 && xpi<=nMaxPiNN);
537// assert(particle1->isNucleon() && particle2->isNucleon());
538
539 if (xpi == 1)
540 return NNOnePi(particle1, particle2);
541 else if (xpi == 2)
542 return NNTwoPi(particle1, particle2);
543 else if (xpi == 3)
544 return NNThreePi(particle1, particle2);
545 else if (xpi == 4)
546 return NNFourPi(particle1, particle2);
547 else // should never reach this point
548 return 0.;
549 }
550
551
553 // HE and LE pi- p and pi+ n
554 G4double ramass = 0.0;
555
556 if(x <= 1306.78) {
557 G4double y = x*x;
558 G4double q2;
559 q2=(y-std::pow(1076.0, 2))*(y-std::pow(800.0, 2))/(4.0*y);
560 if (q2 > 0.) {
561 G4double q3=std::pow(q2, 3./2.);
562 G4double f3=q3/(q3+std::pow(180.0, 3));
563 G4double sdel;
564 sdel=326.5/(std::pow((x-1215.0-ramass)*2.0/110.0,2)+1.0);
565 return sdel*f3*(1.0-5.0*ramass/1215.0);
566 }
567 else {
568 return 0;
569 }
570 }
571 if(x <= 1754.0) {
572 return -2.33730e-06*std::pow(x, 3)+1.13819e-02*std::pow(x,2)
573 -1.83993e+01*x+9893.4;
574 } else if (x <= 2150.0) {
575 return 1.13531e-06*std::pow(x, 3)-6.91694e-03*std::pow(x, 2)
576 +1.39907e+01*x-9360.76;
577 } else {
578 return -3.18087*std::log(x)+52.9784;
579 }
580 }
581
583 // HE pi- p and pi+ n
584 G4double ramass = 0.0;
585
586 if(x <= 1275.8) {
587 G4double y = x*x;
588 G4double q2;
589 q2=(y-std::pow(1076.0, 2))*(y-std::pow(800.0, 2))/(4.0*y);
590 if (q2 > 0.) {
591 G4double q3=std::pow(q2, 3./2.);
592 G4double f3=q3/(q3+std::pow(180.0, 3));
593 G4double sdel;
594 sdel=326.5/(std::pow((x-1215.0-ramass)*2.0/110.0,2)+1.0);
595 return sdel*f3*(1.0-5.0*ramass/1215.0)/3.;
596 }
597 else {
598 return 0;
599 }
600 }
601 if(x <= 1495.0) {
602 return 0.00120683*(x-1372.52)*(x-1372.52)+26.2058;
603 } else if(x <= 1578.0) {
604 return 1.15873e-05*x*x+49965.6/((x-1519.59)*(x-1519.59)+2372.55);
605 } else if(x <= 2028.4) {
606 return 34.0248+43262.2/((x-1681.65)*(x-1681.65)+1689.35);
607 } else if(x <= 7500.0) {
608 return 3.3e-7*(x-7500.0)*(x-7500.0)+24.5;
609 } else {
610 return 24.5;
611 }
612 }
613
614 G4double CrossSectionsMultiPions::total(Particle const * const p1, Particle const * const p2) {
615 G4double inelastic;
616 if(p1->isNucleon() && p2->isNucleon()) {
617 return NNTot(p1, p2);
618 } else if((p1->isNucleon() && p2->isDelta()) ||
619 (p1->isDelta() && p2->isNucleon())) {
620 inelastic = NDeltaToNN(p1, p2);
621 } else if((p1->isNucleon() && p2->isPion()) ||
622 (p1->isPion() && p2->isNucleon())) {
623 return piNTot(p1,p2);
624 } else {
625 inelastic = 0.;
626 }
627
628 return inelastic + elastic(p1, p2);
629 }
630
631
632 G4double CrossSectionsMultiPions::piNIne(Particle const * const particle1, Particle const * const particle2) {
633 // piN inelastic cross section (Delta excluded)
634
635 const Particle *pion;
636 const Particle *nucleon;
637 if(particle1->isNucleon()) {
638 nucleon = particle1;
639 pion = particle2;
640 } else {
641 pion = particle1;
642 nucleon = particle2;
643 }
644// assert(pion->isPion());
645
646 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
647
648 // these limits correspond to sqrt(s)=1230 and 20000 MeV
649 if(pLab>212677. || pLab<296.367)
650 return 0.0;
651
652 const G4int ipit3 = ParticleTable::getIsospin(pion->getType());
653 const G4int ind2t3 = ParticleTable::getIsospin(nucleon->getType());
654 const G4int cg = 4 + ind2t3*ipit3;
655// assert(cg==2 || cg==4 || cg==6);
656
657// const G4double p1=1e-3*pLab;
658// const G4double p2=std::log(p1);
659 G4double xpipp = 0.0;
660 G4double xpimp = 0.0;
661
662 if(cg!=2) {
663 // x-section pi+ p inelastique :
664 xpipp=piPluspIne(pion,nucleon);
665
666 if(cg==6) // cas pi+ p et pi- n
667 return xpipp;
668 }
669
670 // x-section pi- p inelastique :
671 xpimp=piMinuspIne(pion,nucleon);
672
673 if(cg==2) // cas pi- p et pi+ n
674 return xpimp;
675 else // cas pi0 p et pi0 n
676 return 0.5*(xpipp+xpimp);
677 }
678
679 G4double CrossSectionsMultiPions::piNToDelta(Particle const * const particle1, Particle const * const particle2) {
680 // piN Delta production
681
682 G4double x = KinematicsUtils::totalEnergyInCM(particle1, particle2);
683 if(x>20000.) return 0.0; // no cross section above this value
684
685 G4int ipit3 = 0;
686 G4int ind2t3 = 0;
687 const G4double ramass = 0.0;
688
689 if(particle1->isPion()) {
690 ipit3 = ParticleTable::getIsospin(particle1->getType());
691 ind2t3 = ParticleTable::getIsospin(particle2->getType());
692 } else if(particle2->isPion()) {
693 ipit3 = ParticleTable::getIsospin(particle2->getType());
694 ind2t3 = ParticleTable::getIsospin(particle1->getType());
695 }
696
697 const G4double y=x*x;
698 const G4double q2=(y-1076.0*1076.0)*(y-800.0*800.0)/y/4.0;
699 if (q2 <= 0.) {
700 return 0.0;
701 }
702 const G4double q3 = std::pow(std::sqrt(q2),3);
703 const G4double f3 = q3/(q3 + 5832000.); // 5832000 = 180^3
704 G4double sdelResult = 326.5/(std::pow((x-1215.0-ramass)*2.0/(110.0-ramass), 2)+1.0);
705 sdelResult = sdelResult*(1.0-5.0*ramass/1215.0);
706 const G4int cg = 4 + ind2t3*ipit3;
707 sdelResult = sdelResult*f3*cg/6.0;
708
709 return sdelResult;
710 }
711
712 G4double CrossSectionsMultiPions::piNTot(Particle const * const particle1, Particle const * const particle2) {
713 // FUNCTION SPN(X,IND2T3,IPIT3,f17)
714 // SIGMA(PI+ + P) IN THE (3,3) REGION
715 // NEW FIT BY J.VANDERMEULEN + FIT BY Th AOUST ABOVE (3,3) RES
716 // CONST AT LOW AND VERY HIGH ENERGY
717 // COMMON/BL8/RATHR,RAMASS REL21800
718 // integer f17
719 // RATHR and RAMASS are always 0.0!!!
720
721 G4double x = KinematicsUtils::totalEnergyInCM(particle1, particle2);
722
723 G4int ipit3 = 0;
724 G4int ind2t3 = 0;
725
726 if(particle1->isPion()) {
727 ipit3 = ParticleTable::getIsospin(particle1->getType());
728 ind2t3 = ParticleTable::getIsospin(particle2->getType());
729 } else if(particle2->isPion()) {
730 ipit3 = ParticleTable::getIsospin(particle2->getType());
731 ind2t3 = ParticleTable::getIsospin(particle1->getType());
732 }
733
734 G4double spnResult=0.0;
735
736 // HE pi+ p and pi- n
737 if((ind2t3 == 1 && ipit3 == 2) || (ind2t3 == -1 && ipit3 == -2))
738 spnResult=spnPiPlusPHE(x);
739 else if((ind2t3 == 1 && ipit3 == -2) || (ind2t3 == -1 && ipit3 == 2))
740 spnResult=spnPiMinusPHE(x);
741 else if(ipit3 == 0) spnResult = (spnPiPlusPHE(x) + spnPiMinusPHE(x))/2.0; // (spnpipphe(x)+spnpimphe(x))/2.0
742 else {
743 INCL_ERROR("Unknown configuration!\n" << particle1->print() << particle2->print() << '\n');
744 }
745
746 return spnResult;
747 }
748
749 G4double CrossSectionsMultiPions::NDeltaToNN(Particle const * const p1, Particle const * const p2) {
751 if(isospin==4 || isospin==-4) return 0.0;
752
754 G4double Ecm = std::sqrt(s);
755 G4int deltaIsospin;
756 G4double deltaMass;
757 if(p1->isDelta()) {
758 deltaIsospin = ParticleTable::getIsospin(p1->getType());
759 deltaMass = p1->getMass();
760 } else {
761 deltaIsospin = ParticleTable::getIsospin(p2->getType());
762 deltaMass = p2->getMass();
763 }
764
765 if(Ecm <= 938.3 + deltaMass) {
766 return 0.0;
767 }
768
769 if(Ecm < 938.3 + deltaMass + 2.0) {
770 Ecm = 938.3 + deltaMass + 2.0;
771 s = Ecm*Ecm;
772 }
773
775 (s - std::pow(ParticleTable::effectiveNucleonMass + deltaMass, 2));
776 const G4double y = s/(s - std::pow(deltaMass - ParticleTable::effectiveNucleonMass, 2));
777 /* Concerning the way we calculate the lab momentum, see the considerations
778 * in CrossSections::elasticNNLegacy().
779 */
780 G4double sDelta;
781 const G4double xsiso2=NNInelasticIso(Ecm, 2);
782 if (isospin != 0)
783 sDelta = NNOnePiOrDelta(Ecm, isospin, xsiso2);
784 else {
785 const G4double xsiso0=NNInelasticIso(Ecm, 0);
786 sDelta = 0.25*(NNOnePiOrDelta(Ecm, 0, xsiso0)+ NNOnePiOrDelta(Ecm, 2, xsiso2));
787 }
788 G4double result = 0.5 * x * y * sDelta;
789 /* modification for pion-induced cascade (see JC and MC LEMAIRE,NPA489(88)781
790 * result=3.*result
791 * pi absorption increased also for internal pions (7/3/01)
792 */
793 result *= 3.*(32.0 + isospin * isospin * (deltaIsospin * deltaIsospin - 5))/64.0;
794 result /= 1.0 + 0.25 * (isospin * isospin);
795 return result;
796 }
797
798 G4double CrossSectionsMultiPions::NNToNDelta(Particle const * const p1, Particle const * const p2) {
799// assert(p1->isNucleon() && p2->isNucleon());
801 G4double sigma = NNOnePiOrDelta(p1, p2);
802 if(isospin==0)
803 sigma *= 0.5;
804 return sigma;
805 }
806
807 G4double CrossSectionsMultiPions::elastic(Particle const * const p1, Particle const * const p2) {
808// if(!p1->isPion() && !p2->isPion()){
809 if((p1->isNucleon()||p1->isDelta()) && (p2->isNucleon()||p2->isDelta())){
810 return NNElastic(p1, p2);
811 }
812// else if (p1->isNucleon() || p2->isNucleon()){
813 else if ((p1->isNucleon() && p2->isPion()) || (p2->isNucleon() && p1->isPion())){
814 G4double pielas = piNTot(p1,p2) - piNIne(p1,p2) - piNToDelta(p1,p2);
815 if (pielas < 0.){
816 pielas = 0.;
817 }
818// return piNTot(p1,p2) - piNIne(p1,p2) - piNToDelta(p1,p2);
819 return pielas;
820 }
821 else {
822 return 0.0;
823 }
824 }
825
827 G4double x = 0.001 * pl; // Change to GeV
828 if(iso != 0) {
829 if(pl <= 2000.0) {
830 x = std::pow(x, 8);
831 return 5.5e-6 * x/(7.7 + x);
832 } else {
833 return (5.34 + 0.67*(x - 2.0)) * 1.0e-6;
834 }
835 } else {
836 if(pl < 800.0) {
837 G4double b = (7.16 - 1.63*x) * 1.0e-6;
838 return b/(1.0 + std::exp(-(x - 0.45)/0.05));
839 } else if(pl < 1100.0) {
840 return (9.87 - 4.88 * x) * 1.0e-6;
841 } else {
842 return (3.68 + 0.76*x) * 1.0e-6;
843 }
844 }
845 return 0.0; // Should never reach this point
846 }
847
848
849 G4double CrossSectionsMultiPions::piNToxPiN(const G4int xpi, Particle const * const particle1, Particle const * const particle2) {
850 //
851 // pion-Nucleon producing xpi pions cross sections
852 //
853 const Particle *pion;
854 const Particle *nucleon;
855 if(particle1->isNucleon()) {
856 nucleon = particle1;
857 pion = particle2;
858 } else {
859 pion = particle1;
860 nucleon = particle2;
861 }
862// assert(xpi>1 && xpi<=nMaxPiPiN);
863// assert((particle1->isNucleon() && particle2->isPion()) || (particle1->isPion() && particle2->isNucleon()));
864 const G4double plab = KinematicsUtils::momentumInLab(pion,nucleon);
865 if (xpi == 2) {
866 G4double OnePi=piNOnePi(particle1,particle2);
867 if (OnePi < 1.e-09) OnePi = 0.;
868 return OnePi;
869 }
870 else if (xpi == 3){
871 G4double TwoPi=piNTwoPi(particle1,particle2);
872 if (TwoPi < 1.e-09) TwoPi = 0.;
873 return TwoPi;
874 }
875 else if (xpi == 4) {
876 G4double piNThreePi = piNIne(particle1,particle2) - piNOnePi(particle1,particle2) - piNTwoPi(particle1,particle2);
877 if (piNThreePi < 1.e-09 || plab < 2000.) piNThreePi = 0.;
878 return piNThreePi;
879 } else // should never reach this point
880 return 0.0;
881 }
882
883 G4double CrossSectionsMultiPions::piNOnePi(Particle const * const particle1, Particle const * const particle2) {
884 const Particle *pion;
885 const Particle *nucleon;
886 if(particle1->isNucleon()) {
887 nucleon = particle1;
888 pion = particle2;
889 } else {
890 pion = particle1;
891 nucleon = particle2;
892 }
893// assert(pion->isPion());
894
895 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
896
897 // this limit corresponds to sqrt(s)=1230 MeV
898 if(pLab<296.367)
899 return 0.0;
900
901 const G4int ipi = ParticleTable::getIsospin(pion->getType());
902 const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
903 const G4int cg = 4 + ind2*ipi;
904// assert(cg==2 || cg==4 || cg==6);
905
906 // const G4double p1=1e-3*pLab;
907 G4double tamp6=0.;
908 G4double tamp2=0.;
909 const G4double elas = elastic(particle1, particle2);
910
911 // X-SECTION PI+ P INELASTIQUE :
912 if(cg != 2) {
913 tamp6=piPluspOnePi(particle1,particle2);
914 if (cg == 6){ // CAS PI+ P ET PI- N
915 if(tamp6 >= elas && pLab < 410.) tamp6 = elas;
916 return tamp6;
917 }
918 }
919
920 // X-SECTION PI- P INELASTIQUE :
921 tamp2=piMinuspOnePi(particle1,particle2);
922 if (tamp2 < 0.0) tamp2=0;
923
924 if (cg == 2) // CAS PI- P ET PI+ N
925 return tamp2;
926 else { // CAS PI0 P ET PI0 N
927 G4double s1pin = 0.5*(tamp6+tamp2);
928 const G4double inelastic = piNIne(particle1, particle2);
929 if(s1pin >= elas && pLab < 410.) s1pin = 0.;
930 if (s1pin > inelastic)
931 s1pin = inelastic;
932 return s1pin;
933 }
934 }
935
936 G4double CrossSectionsMultiPions::piNTwoPi(Particle const * const particle1, Particle const * const particle2) {
937 //
938 // pion-nucleon interaction, producing 2 pions
939 // fit from Landolt-Bornstein multiplied by factor determined with evaluation of total xs
940 //
941
942 const Particle *pion;
943 const Particle *nucleon;
944 if(particle1->isNucleon()) {
945 nucleon = particle1;
946 pion = particle2;
947 } else {
948 pion = particle1;
949 nucleon = particle2;
950 }
951// assert(pion->isPion());
952
953 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
954 const G4double elas = elastic(pion, nucleon);
955
956 // this limit corresponds to sqrt(s)=1230 MeV
957 if(pLab<296.367)
958 return 0.0;
959
960 const G4int ipi = ParticleTable::getIsospin(pion->getType());
961 const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
962 const G4int cg = 4 + ind2*ipi;
963// assert(cg==2 || cg==4 || cg==6);
964
965 G4double tamp6=0.;
966 G4double tamp2=0.;
967
968 // X-SECTION PI+ P INELASTIQUE :
969 if(cg!=2) {
970 tamp6=piPluspTwoPi(particle1,particle2);
971 if(cg==6){ // CAS PI+ P ET PI- N
972 if(tamp6 >= elas && pLab < 410.) tamp6 = 0.;
973 return tamp6;}
974 }
975
976 // X-SECTION PI- P INELASTIQUE :
977 tamp2=piMinuspTwoPi(particle1,particle2);
978
979 if(cg==2) // CAS PI- P ET PI+ N
980 return tamp2;
981 else { // CAS PI0 P ET PI0 N
982 const G4double s2pin=0.5*(tamp6+tamp2);
983 return s2pin;
984 }
985 }
986
987 G4double CrossSectionsMultiPions::piPluspIne(Particle const * const particle1, Particle const * const particle2) {
988 // piPlusP inelastic cross section (Delta excluded)
989
990 const Particle *pion;
991 const Particle *nucleon;
992 if(particle1->isNucleon()) {
993 nucleon = particle1;
994 pion = particle2;
995 } else {
996 pion = particle1;
997 nucleon = particle2;
998 }
999// assert(pion->isPion());
1000
1001 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1002
1003 // these limits correspond to sqrt(s)=1230 and 20000 MeV
1004 if(pLab>212677. || pLab<296.367)
1005 return 0.0;
1006
1007// const G4int ipit3 = ParticleTable::getIsospin(pion->getType());
1008// const G4int ind2t3 = ParticleTable::getIsospin(nucleon->getType());
1009// const G4int cg = 4 + ind2t3*ipit3;
1010// assert(cg==2 || cg==4 || cg==6);
1011
1012 const G4double p1=1e-3*pLab;
1013 const G4double p2=std::log(p1);
1014 G4double xpipp = 0.0;
1015
1016 // x-section pi+ p inelastique :
1017 if(p1<=0.75)
1018 xpipp=17.965*std::pow(p1, 5.4606);
1019 else
1020 xpipp=24.3-12.3*std::pow(p1, -1.91)+0.324*p2*p2-2.44*p2;
1021 // cas pi+ p et pi- n
1022 return xpipp;
1023
1024 }
1025
1026 G4double CrossSectionsMultiPions::piMinuspIne(Particle const * const particle1, Particle const * const particle2) {
1027 // piMinusp inelastic cross section (Delta excluded)
1028
1029 const Particle *pion;
1030 const Particle *nucleon;
1031 if(particle1->isNucleon()) {
1032 nucleon = particle1;
1033 pion = particle2;
1034 } else {
1035 pion = particle1;
1036 nucleon = particle2;
1037 }
1038// assert(pion->isPion());
1039
1040 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1041
1042 // these limits correspond to sqrt(s)=1230 and 20000 MeV
1043 if(pLab>212677. || pLab<296.367)
1044 return 0.0;
1045
1046// const G4int ipit3 = ParticleTable::getIsospin(pion->getType());
1047// const G4int ind2t3 = ParticleTable::getIsospin(nucleon->getType());
1048// const G4int cg = 4 + ind2t3*ipit3;
1049// assert(cg==2 || cg==4 || cg==6);
1050
1051 const G4double p1=1e-3*pLab;
1052 const G4double p2=std::log(p1);
1053 G4double xpimp = 0.0;
1054
1055 // x-section pi- p inelastique :
1056 if(p1 <= 0.4731)
1057 xpimp=0;
1058 else
1059 xpimp=26.6-7.18*std::pow(p1, -1.86)+0.327*p2*p2-2.81*p2;
1060 if(xpimp<0.)
1061 xpimp=0;
1062
1063 // cas pi- p et pi+ n
1064 return xpimp;
1065
1066 }
1067
1068 G4double CrossSectionsMultiPions::piPluspOnePi(Particle const * const particle1, Particle const * const particle2) {
1069 const Particle *pion;
1070 const Particle *nucleon;
1071 if(particle1->isNucleon()) {
1072 nucleon = particle1;
1073 pion = particle2;
1074 } else {
1075 pion = particle1;
1076 nucleon = particle2;
1077 }
1078// assert(pion->isPion());
1079
1080 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1081
1082 // this limit corresponds to sqrt(s)=1230 MeV
1083 if(pLab<296.367)
1084 return 0.0;
1085
1086 // const G4int ipi = ParticleTable::getIsospin(pion->getType());
1087 // const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1088 // const G4int cg = 4 + ind2*ipi;
1089 // assert(cg==2 || cg==4 || cg==6);
1090
1091 const G4double p1=1e-3*pLab;
1092 G4double tamp6=0.;
1093
1094 // X-SECTION PI+ P INELASTIQUE :
1095 if(pLab < 1532.52) // corresponds to sqrt(s)=1946 MeV
1096 tamp6=piPluspIne(particle1, particle2);
1097 else
1098 tamp6=0.204+18.2*std::pow(p1, -1.72)+6.33*std::pow(p1, -1.13);
1099
1100 // CAS PI+ P ET PI- N
1101 return tamp6;
1102
1103 }
1104
1105 G4double CrossSectionsMultiPions::piMinuspOnePi(Particle const * const particle1, Particle const * const particle2) {
1106 const Particle *pion;
1107 const Particle *nucleon;
1108 if(particle1->isNucleon()) {
1109 nucleon = particle1;
1110 pion = particle2;
1111 } else {
1112 pion = particle1;
1113 nucleon = particle2;
1114 }
1115// assert(pion->isPion());
1116
1117 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1118
1119 // this limit corresponds to sqrt(s)=1230 MeV
1120 if(pLab<296.367)
1121 return 0.0;
1122
1123 // const G4int ipi = ParticleTable::getIsospin(pion->getType());
1124 // const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1125 // const G4int cg = 4 + ind2*ipi;
1126 // assert(cg==2 || cg==4 || cg==6);
1127
1128 const G4double p1=1e-3*pLab;
1129 G4double tamp2=0.;
1130
1131 // X-SECTION PI- P INELASTIQUE :
1132 if (pLab < 1228.06) // corresponds to sqrt(s)=1794 MeV
1133 tamp2=piMinuspIne(particle1, particle2);
1134 else
1135 tamp2=9.04*std::pow(p1, -1.17)+18.*std::pow(p1, -1.21); // tamp2=9.04*std::pow(p1, -1.17)+(13.5*std::pow(p1, -1.21))*4./3.;
1136 if (tamp2 < 0.0) tamp2=0;
1137
1138 // CAS PI- P ET PI+ N
1139 return tamp2;
1140 }
1141
1142 G4double CrossSectionsMultiPions::piPluspTwoPi(Particle const * const particle1, Particle const * const particle2) {
1143 //
1144 // pion-nucleon interaction, producing 2 pions
1145 // fit from Landolt-Bornstein multiplied by factor determined with evaluation of total xs
1146 //
1147
1148 const Particle *pion;
1149 const Particle *nucleon;
1150 if(particle1->isNucleon()) {
1151 nucleon = particle1;
1152 pion = particle2;
1153 } else {
1154 pion = particle1;
1155 nucleon = particle2;
1156 }
1157// assert(pion->isPion());
1158
1159 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1160
1161 // this limit corresponds to sqrt(s)=1230 MeV
1162 if(pLab<296.367)
1163 return 0.0;
1164
1165 // const G4int ipi = ParticleTable::getIsospin(pion->getType());
1166 // const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1167 // const G4int cg = 4 + ind2*ipi;
1168 // assert(cg==2 || cg==4 || cg==6);
1169
1170 const G4double p1=1e-3*pLab;
1171 G4double tamp6=0.;
1172
1173 // X-SECTION PI+ P INELASTIQUE :
1174 if(pLab < 2444.7) // corresponds to sqrt(s)=2344 MeV
1175 tamp6=piPluspIne(particle1, particle2)-piPluspOnePi(particle1, particle2);
1176 else
1177 tamp6=1.59+25.5*std::pow(p1, -1.04); // tamp6=(0.636+10.2*std::pow(p1, -1.04))*15./6.;
1178
1179 // CAS PI+ P ET PI- N
1180 return tamp6;
1181 }
1182
1183 G4double CrossSectionsMultiPions::piMinuspTwoPi(Particle const * const particle1, Particle const * const particle2) {
1184 //
1185 // pion-nucleon interaction, producing 2 pions
1186 // fit from Landolt-Bornstein multiplied by factor determined with evaluation of total xs
1187 //
1188
1189 const Particle *pion;
1190 const Particle *nucleon;
1191 if(particle1->isNucleon()) {
1192 nucleon = particle1;
1193 pion = particle2;
1194 } else {
1195 pion = particle1;
1196 nucleon = particle2;
1197 }
1198// assert(pion->isPion());
1199
1200 const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1201
1202 // this limit corresponds to sqrt(s)=1230 MeV
1203 if(pLab<296.367)
1204 return 0.0;
1205
1206 // const G4int ipi = ParticleTable::getIsospin(pion->getType());
1207 // const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1208 // const G4int cg = 4 + ind2*ipi;
1209 // assert(cg==2 || cg==4 || cg==6);
1210
1211 const G4double p1=1e-3*pLab;
1212 G4double tamp2=0.;
1213
1214 // X-SECTION PI- P INELASTIQUE :
1215 if(pLab<2083.63) // corresponds to sqrt(s)=2195 MeV
1216 tamp2=piMinuspIne(particle1, particle2)-piMinuspOnePi(particle1, particle2);
1217 else
1218 tamp2=2.457794117647+18.066176470588*std::pow(p1, -0.92); // tamp2=(0.619+4.55*std::pow(p1, -0.92))*135./34.;
1219
1220 // CAS PI- P ET PI+ N
1221 return tamp2;
1222}
1223
1224
1225
1226
1228 //
1229 // Pion-Nucleon producing Eta cross sections
1230 //
1231 return 0.;
1232 }
1233
1235 //
1236 // Pion-Nucleon producing Omega cross sections
1237 //
1238 return 0.;
1239 }
1240
1242 //
1243 // Pion-Nucleon producing EtaPrime cross sections
1244 //
1245 return 0.;
1246 }
1247
1249 //
1250 // Eta-Nucleon producing Pion cross sections
1251 //
1252 return 0.;
1253 }
1254
1255
1257 //
1258 // Eta-Nucleon producing Two Pions cross sections
1259 //
1260 return 0.;
1261 }
1262
1263
1265 //
1266 // Omega-Nucleon producing Pion cross sections
1267 //
1268 return 0.;
1269 }
1270
1272 //
1273 // Omega-Nucleon producing Two Pions cross sections
1274 //
1275 return 0.;
1276 }
1277
1279 //
1280 // EtaPrime-Nucleon producing Pion cross sections
1281 //
1282 return 0.;
1283 }
1284
1286 //
1287 // Nucleon-Nucleon producing Eta cross sections
1288 //
1289 return 0.;
1290 }
1291
1293 //
1294 // Nucleon-Nucleon producing Eta cross sections
1295 //
1296 return 0.;
1297 }
1298
1300 return 0.;
1301 }
1302
1304 //
1305 // Nucleon-Nucleon producing N-Delta-Eta cross sections
1306 //
1307 return 0.;
1308 }
1309
1311 //
1312 // Nucleon-Nucleon producing Omega cross sections
1313 //
1314 return 0.;
1315 }
1316
1318 //
1319 // Nucleon-Nucleon producing Omega cross sections
1320 //
1321 return 0.;
1322 }
1323
1325 return 0.;
1326 }
1327
1329 //
1330 // Nucleon-Nucleon producing N-Delta-Omega cross sections
1331 //
1332 return 0.;
1333 }
1334
1335
1336
1337
1339 //
1340 // Hyperon-Nucleon elastic cross sections
1341 //
1342 return 0.;
1343 }
1344
1346 //
1347 // Kaon-Nucleon elastic cross sections
1348 //
1349 return 0.;
1350 }
1351
1353 //
1354 // antiKaon-Nucleon elastic cross sections
1355 //
1356 return 0.;
1357 }
1358
1359
1361 //
1362 // Nucleon-Nucleon producing N-Lambda-Kaon cross sections
1363 //
1364 return 0.;
1365 }
1366
1368 //
1369 // Nucleon-Nucleon producing N-Sigma-Kaon cross sections
1370 //
1371 return 0.;
1372 }
1373
1375 //
1376 // Nucleon-Nucleon producing N-Lambda-Kaon-pion cross sections
1377 //
1378 return 0.;
1379 }
1380
1382 //
1383 // Nucleon-Nucleon producing N-Sigma-Kaon-pion cross sections
1384 //
1385 return 0.;
1386 }
1387
1389 //
1390 // Nucleon-Nucleon producing N-Lambda-Kaon-2pion cross sections
1391 //
1392 return 0.;
1393 }
1394
1396 //
1397 // Nucleon-Nucleon producing N-Sigma-Kaon-2pion cross sections
1398 //
1399 return 0.;
1400 }
1401
1403 //
1404 // Nucleon-Nucleon producing Nucleon-Nucleon-Kaon-antiKaon cross sections
1405 //
1406 return 0.;
1407 }
1408
1410 //
1411 // Nucleon-Nucleon missing strangeness production cross sections
1412 //
1413 return 0.;
1414 }
1415
1417 // Nucleon-Delta producing Nucleon Lambda Kaon cross section
1418 return 0;
1419 }
1421 // Nucleon-Delta producing Nucleon Sigma Kaon cross section
1422 return 0;
1423 }
1425 // Nucleon-Delta producing Delta Lambda Kaon cross section
1426 return 0;
1427 }
1429 // Nucleon-Delta producing Delta Sigma Kaon cross section
1430 return 0;
1431 }
1432
1434 // Nucleon-Delta producing Nucleon-Nucleon Kaon antiKaon cross section
1435 return 0;
1436 }
1437
1438
1440 //
1441 // Pion-Nucleon producing Lambda-Kaon cross sections
1442 //
1443 return 0.;
1444 }
1445
1447 //
1448 // Pion-Nucleon producing Sigma-Kaon cross sections
1449 //
1450 return 0.;
1451 }
1453 return 0.;
1454 }
1456 return 0.;
1457 }
1459 return 0.;
1460 }
1461
1463 //
1464 // Pion-Nucleon producing Lambda-Kaon-pion cross sections
1465 //
1466 return 0.;
1467 }
1468
1470 //
1471 // Pion-Nucleon producing Sigma-Kaon-pion cross sections
1472 //
1473 return 0.;
1474 }
1475
1477 //
1478 // Pion-Nucleon producing Lambda-Kaon-2pion cross sections
1479 //
1480 return 0.;
1481 }
1482
1484 //
1485 // Pion-Nucleon producing Lambda-Kaon-2pion cross sections
1486 //
1487 return 0.;
1488 }
1489
1491 //
1492 // Pion-Nucleon producing Nucleon-Kaon-antiKaon cross sections
1493 //
1494 return 0.;
1495 }
1496
1498 //
1499 // Pion-Nucleon missing strangeness production cross sections
1500 //
1501 return 0.;
1502 }
1503
1505 //
1506 // Nucleon-Hyperon multiplet changing cross sections
1507 //
1508 return 0.;
1509 }
1510
1512 //
1513 // Nucleon-Sigma quasi-elastic cross sections
1514 //
1515 return 0.;
1516 }
1517
1519 //
1520 // Nucleon-Sigma quasi-elastic cross sections
1521 //
1522 return 0.;
1523 }
1524
1526 //
1527 // Nucleon-Kaon quasi-elastic cross sections
1528 //
1529 return 0.;
1530 }
1531
1533 //
1534 // Nucleon-Kaon producing Nucleon-Kaon-pion cross sections
1535 //
1536 return 0.;
1537 }
1538
1540 //
1541 // Nucleon-Kaon producing Nucleon-Kaon-2pion cross sections
1542 //
1543 return 0.;
1544 }
1545
1547 //
1548 // Nucleon-antiKaon quasi-elastic cross sections
1549 //
1550 return 0.;
1551 }
1552
1554 //
1555 // Nucleon-antiKaon producing Sigma-pion cross sections
1556 //
1557 return 0.;
1558 }
1559
1561 //
1562 // Nucleon-antiKaon producing Lambda-pion cross sections
1563 //
1564 return 0.;
1565 }
1566
1568 //
1569 // Nucleon-antiKaon producing Sigma-2pion cross sections
1570 //
1571 return 0.;
1572 }
1573
1575 //
1576 // Nucleon-antiKaon producing Lambda-2pion cross sections
1577 //
1578 return 0.;
1579 }
1580
1582 //
1583 // Nucleon-antiKaon producing Nucleon-antiKaon-pion cross sections
1584 //
1585 return 0.;
1586 }
1587
1589 //
1590 // Nucleon-antiKaon producing Nucleon-antiKaon-2pion cross sections
1591 //
1592 return 0.;
1593 }
1594
1595
1596
1597
1598} // namespace G4INCL
1599
Cross sections used in INCL Multipions.
#define INCL_ERROR(x)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
virtual G4double p_pimToSzKz(Particle const *const p1, Particle const *const p2)
static const G4double s02pmOOT
One over threshold for s02pm.
virtual G4double NDeltaToNSK(Particle const *const p1, Particle const *const p2)
virtual G4double etaPrimeNToPiN(Particle const *const p1, Particle const *const p2)
Cross section for EtaPrimeN->PiN.
virtual G4double NpiToNKKb(Particle const *const p1, Particle const *const p2)
const HornerC4 s12zzHC
Horner coefficients for s12zz.
const HornerC6 s02pmHC
Horner coefficients for s02pm.
G4double spnPiPlusPHE(const G4double x)
Internal function for pion cross sections.
G4double piMinuspTwoPi(Particle const *const p1, Particle const *const p2)
virtual G4double NpiToLK2pi(Particle const *const p1, Particle const *const p2)
const HornerC4 s01pzHC
Horner coefficients for s01pz.
virtual G4double NNToMissingStrangeness(Particle const *const p1, Particle const *const p2)
virtual G4double NpiToSK(Particle const *const p1, Particle const *const p2)
virtual G4double NNToNNEta(Particle const *const particle1, Particle const *const particle2)
Cross section for Eta production - NN entrance channel.
static const G4double s11pmOOT
One over threshold for s11pm.
virtual G4double piNToxPiN(const G4int xpi, Particle const *const p1, Particle const *const p2)
Cross section for X pion production - piN Channel.
virtual G4double NDeltaToNNKKb(Particle const *const p1, Particle const *const p2)
static const G4double s02pzOOT
One over threshold for s02pz.
virtual G4double p_pimToSmKp(Particle const *const p1, Particle const *const p2)
G4double NNElasticFixed(const G4double s, const G4int i)
Internal implementation of the NN elastic cross section with fixed isospin.
G4double piNTot(Particle const *const p1, Particle const *const p2)
virtual G4double piNToEtaN(Particle const *const p1, Particle const *const p2)
Cross sections for mesonic resonance production - piN Channel.
virtual G4double piNToEtaPrimeN(Particle const *const p1, Particle const *const p2)
Cross section for PiN->EtaPrimeN.
virtual G4double calculateNNAngularSlope(G4double energyCM, G4int iso)
Calculate the slope of the NN DDXS.
static const G4double s12zzOOT
One over threshold for s12zz.
virtual G4double NNToNSK2pi(Particle const *const p1, Particle const *const p2)
virtual G4double piNToDelta(Particle const *const p1, Particle const *const p2)
Cross section for Delta production - piN Channel.
static const G4double s01pzOOT
One over threshold for s01pz.
static const G4int nMaxPiNN
Maximum number of outgoing pions in NN collisions.
virtual G4double NKelastic(Particle const *const p1, Particle const *const p2)
virtual G4double omegaNToPiPiN(Particle const *const p1, Particle const *const p2)
Cross section for OmegaN->PiPiN.
static const G4double s01ppOOT
One over threshold for s01pp.
virtual G4double elastic(Particle const *const p1, Particle const *const p2)
Elastic particle-particle cross section.
virtual G4double etaNToPiN(Particle const *const p1, Particle const *const p2)
Cross sections for mesonic resonance absorption on nucleon - piN Channel.
virtual G4double NpiToSK2pi(Particle const *const p1, Particle const *const p2)
virtual G4double NpiToLK(Particle const *const p1, Particle const *const p2)
Nucleon-Pion to Stange particles cross sections.
virtual G4double p_pizToSzKp(Particle const *const p1, Particle const *const p2)
virtual G4double NKbToNKbpi(Particle const *const p1, Particle const *const p2)
G4double NNTot(Particle const *const part1, Particle const *const part2)
Internal implementation of the NN total cross section.
virtual G4double NNToNSK(Particle const *const p1, Particle const *const p2)
virtual G4double omegaNToPiN(Particle const *const p1, Particle const *const p2)
Cross section for OmegaN->PiN.
virtual G4double piNTwoPi(Particle const *const p1, Particle const *const p2)
Cross section for Two (more) pion production - piN entrance channel.
virtual G4double NNToNNOmegaExclu(Particle const *const particle1, Particle const *const particle2)
Cross section for Eta production (exclusive) - NN entrance channel.
static const G4double s11pzOOT
One over threshold for s11pz.
static const G4double s12mzOOT
One over threshold for s12mz.
virtual G4double NKbelastic(Particle const *const p1, Particle const *const p2)
virtual G4double NNToNDeltaEta(Particle const *const p1, Particle const *const p2)
Cross section for N-Delta-Eta production - NNEta Channel.
const HornerC8 s01ppHC
Horner coefficients for s01pp.
G4double NNTotFixed(const G4double s, const G4int i)
Internal implementation of the NN total cross section with fixed isospin.
virtual G4double NDeltaToNN(Particle const *const p1, Particle const *const p2)
Cross section for NDelta->NN.
virtual G4double NNTwoPi(const G4double ener, const G4int iso, const G4double xsiso)
Cross section for direct 2-pion production - NN entrance channel.
virtual G4double NKbToL2pi(Particle const *const p1, Particle const *const p2)
virtual G4double NNToNLKpi(Particle const *const p1, Particle const *const p2)
virtual G4double NNToNNKKb(Particle const *const p1, Particle const *const p2)
static const G4double s12ppOOT
One over threshold for s12pp.
virtual G4double NDeltaToDeltaSK(Particle const *const p1, Particle const *const p2)
G4double piPluspIne(Particle const *const p1, Particle const *const p2)
virtual G4double NKToNK(Particle const *const p1, Particle const *const p2)
Nucleon-Kaon quasi-elastic and inelastic cross sections.
virtual G4double NNToNDelta(Particle const *const p1, Particle const *const p2)
Cross section for Delta production - NN Channel.
virtual G4double NKbToSpi(Particle const *const p1, Particle const *const p2)
const HornerC4 s11pmHC
Horner coefficients for s11pm.
virtual G4double piNToOmegaN(Particle const *const p1, Particle const *const p2)
Cross section for PiN->OmegaN.
static const G4int nMaxPiPiN
Maximum number of outgoing pions in piN collisions.
virtual G4double total(Particle const *const p1, Particle const *const p2)
Total (elastic+inelastic) particle-particle cross section.
virtual G4double NNToNNEtaExclu(Particle const *const particle1, Particle const *const particle2)
Cross section for Eta production (exclusive) - NN entrance channel.
G4double piNIne(Particle const *const p1, Particle const *const p2)
virtual G4double NNToNNEtaxPi(const G4int xpi, Particle const *const p1, Particle const *const p2)
Cross section for X pion production - NNEta Channel.
const HornerC7 s11pzHC
Horner coefficients for s11pz.
G4double piMinuspIne(Particle const *const p1, Particle const *const p2)
static const G4double s12pmOOT
One over threshold for s12pm.
const HornerC3 s12ppHC
Horner coefficients for s12pp.
const HornerC4 s12mzHC
Horner coefficients for s12mz.
virtual G4double NKToNK2pi(Particle const *const p1, Particle const *const p2)
virtual G4double NNOnePiOrDelta(const G4double ener, const G4int iso, const G4double xsiso)
Cross section for direct 1-pion production + delta production - NN entrance channel.
G4double NNElastic(Particle const *const part1, Particle const *const part2)
Internal implementation of the NN elastic cross section.
virtual G4double NpiToMissingStrangeness(Particle const *const p1, Particle const *const p2)
virtual G4double NDeltaToNLK(Particle const *const p1, Particle const *const p2)
Nucleon-Delta to Stange particles cross sections.
virtual G4double NKToNKpi(Particle const *const p1, Particle const *const p2)
virtual G4double NNToNLK(Particle const *const p1, Particle const *const p2)
Nucleon-Nucleon to Stange particles cross sections.
virtual G4double NNToNNOmega(Particle const *const particle1, Particle const *const particle2)
Cross section for Eta production - NN entrance channel.
virtual G4double NSToNS(Particle const *const p1, Particle const *const p2)
virtual G4double NNThreePi(const G4double ener, const G4int iso, const G4double xsiso, const G4double xs1pi, const G4double xs2pi)
Cross section for direct 3-pion production - NN entrance channel.
virtual G4double NKbToNKb(Particle const *const p1, Particle const *const p2)
Nucleon-antiKaon quasi-elastic and inelastic cross sections.
virtual G4double NNOnePi(Particle const *const part1, Particle const *const part2)
Cross section for direct 1-pion production - NN entrance channel.
virtual G4double NNToxPiNN(const G4int xpi, Particle const *const p1, Particle const *const p2)
Cross section for X pion production - NN Channel.
virtual G4double NSToNL(Particle const *const p1, Particle const *const p2)
virtual G4double piNOnePi(Particle const *const p1, Particle const *const p2)
Cross section for One (more) pion production - piN entrance channel.
virtual G4double NLToNS(Particle const *const p1, Particle const *const p2)
Nucleon-Hyperon cross sections.
virtual G4double NpiToLKpi(Particle const *const p1, Particle const *const p2)
G4double piMinuspOnePi(Particle const *const p1, Particle const *const p2)
virtual G4double NKbToLpi(Particle const *const p1, Particle const *const p2)
G4double spnPiMinusPHE(const G4double x)
Internal function for pion cross sections.
virtual G4double NNToNDeltaOmega(Particle const *const p1, Particle const *const p2)
Cross section for N-Delta-Eta production - NNEta Channel.
virtual G4double NNToNSKpi(Particle const *const p1, Particle const *const p2)
virtual G4double etaNToPiPiN(Particle const *const p1, Particle const *const p2)
Cross sections for mesonic resonance absorption on nucleon - pipiN Channel.
G4double piPluspOnePi(Particle const *const p1, Particle const *const p2)
virtual G4double NYelastic(Particle const *const p1, Particle const *const p2)
elastic scattering for Nucleon-Strange Particles cross sections
virtual G4double NDeltaToDeltaLK(Particle const *const p1, Particle const *const p2)
G4double NNInelasticIso(const G4double ener, const G4int iso)
Internal implementation of the isospin dependent NN reaction cross section.
virtual G4double NNFourPi(Particle const *const part1, Particle const *const part2)
Cross section for direct 4-pion production - NN entrance channel.
const HornerC5 s12pmHC
Horner coefficients for s12pm.
virtual G4double NNToNNOmegaxPi(const G4int xpi, Particle const *const p1, Particle const *const p2)
Cross section for X pion production - NNEta Channel.
virtual G4double NNToNLK2pi(Particle const *const p1, Particle const *const p2)
virtual G4double NpiToSKpi(Particle const *const p1, Particle const *const p2)
const HornerC4 s02pzHC
Horner coefficients for s02pz.
G4double piPluspTwoPi(Particle const *const p1, Particle const *const p2)
virtual G4double NKbToNKb2pi(Particle const *const p1, Particle const *const p2)
virtual G4double NKbToS2pi(Particle const *const p1, Particle const *const p2)
G4bool isPion() const
Is this a pion?
G4INCL::ParticleType getType() const
std::string print() const
G4double getMass() const
Get the cached particle mass.
G4bool isDelta() const
Is it a Delta?
G4bool isNucleon() const
G4double squareTotalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
const G4double effectiveNucleonMass2
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass
static G4double eval(const G4double pLab, const G4double oneOverThreshold, HornerCoefficients< N > const &coeffs)
static G4double eval(const G4double x, HornerCoefficients< N > const &coeffs)