Geant4
11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolynomialSolver.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
// G4PolynomialSolver
27
//
28
// Class description:
29
//
30
// G4PolynomialSolver allows the user to solve a polynomial equation
31
// with a great precision. This is used by Implicit Equation solver.
32
//
33
// The Bezier clipping method is used to solve the polynomial.
34
//
35
// How to use it:
36
// Create a class that is the function to be solved.
37
// This class could have internal parameters to allow to change
38
// the equation to be solved without recreating a new one.
39
//
40
// Define a Polynomial solver, example:
41
// G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
42
// PolySolver (&MyFunction,
43
// &MyFunctionClass::Function,
44
// &MyFunctionClass::Derivative,
45
// precision);
46
//
47
// The precision is relative to the function to solve.
48
//
49
// In MyFunctionClass, provide the function to solve and its derivative:
50
// Example of function to provide :
51
//
52
// x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
53
//
54
// G4double MyFunctionClass::Function(G4double value)
55
// {
56
// G4double Lx,Ly,Lz;
57
// G4double result;
58
//
59
// Lx = x + value*dx;
60
// Ly = y + value*dy;
61
// Lz = z + value*dz;
62
//
63
// result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
64
//
65
// return result ;
66
// }
67
//
68
// G4double MyFunctionClass::Derivative(G4double value)
69
// {
70
// G4double Lx,Ly,Lz;
71
// G4double result;
72
//
73
// Lx = x + value*dx;
74
// Ly = y + value*dy;
75
// Lz = z + value*dz;
76
//
77
// result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
78
// result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
79
// result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
80
//
81
// return result;
82
// }
83
//
84
// Then to have a root inside an interval [IntervalMin,IntervalMax] do the
85
// following:
86
//
87
// MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
88
89
// Author: E.Medernach, 19.12.2000 - First implementation
90
// --------------------------------------------------------------------
91
#ifndef G4POL_SOLVER_HH
92
#define G4POL_SOLVER_HH 1
93
94
#include "
globals.hh
"
95
96
template
<
class
T,
class
F>
97
class
G4PolynomialSolver
98
{
99
public
:
100
G4PolynomialSolver
(T* typeF, F func, F deriv,
G4double
precision);
101
~G4PolynomialSolver
();
102
103
G4double
solve
(
G4double
IntervalMin,
G4double
IntervalMax);
104
105
private
:
106
G4double
Newton(
G4double
IntervalMin,
G4double
IntervalMax);
107
// General Newton method with Bezier Clipping
108
109
// Works for polynomial of order less or equal than 4.
110
// But could be changed to work for polynomial of any order providing
111
// that we find the bezier control points.
112
113
G4int
BezierClipping(
G4double
* IntervalMin,
G4double
* IntervalMax);
114
// This is just one iteration of Bezier Clipping
115
116
T* FunctionClass;
117
F Function;
118
F Derivative;
119
120
G4double
Precision;
121
};
122
123
#include "G4PolynomialSolver.icc"
124
125
#endif
G4double
double G4double
Definition:
G4Types.hh:83
G4int
int G4int
Definition:
G4Types.hh:85
G4PolynomialSolver
Definition:
G4PolynomialSolver.hh:98
G4PolynomialSolver::~G4PolynomialSolver
~G4PolynomialSolver()
G4PolynomialSolver::G4PolynomialSolver
G4PolynomialSolver(T *typeF, F func, F deriv, G4double precision)
G4PolynomialSolver::solve
G4double solve(G4double IntervalMin, G4double IntervalMax)
globals.hh
geant4-v11.1.1
source
global
HEPNumerics
include
G4PolynomialSolver.hh
Generated by
1.9.6