Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ParaFissionModel.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26#ifndef G4ParaFissionModel_h
27#define G4ParaFissionModel_h 1
28
32#include "G4NucleiProperties.hh"
33//#include "G4ParticleTable.hh"
34
35// Class Description
36// Final state production model for (based on evaluated data
37// libraries) description of neutron induced fission below 60 MeV;
38// In case you need the fission fragments, use this model.
39// To be used in your physics list in case you need this physics.
40// In this case you want to register an object of this class with
41// the corresponding process.
42
43
45{
46public:
47
49 {
50 SetMinEnergy( 0.0 );
51 SetMaxEnergy( 60.*MeV );
52 }
53
54 virtual ~G4ParaFissionModel() {};
55
57 G4Nucleus& theNucleus)
58 {
59 theParticleChange.Clear();
60 theParticleChange.SetStatusChange( stopAndKill );
61 theParticleChange.SetEnergyChange( 0.0 );
62
63 // prepare the fragment
64
65 G4int A = theNucleus.GetA_asInt();
66 G4int Z = theNucleus.GetZ_asInt();
68
69 G4int numberOfEx = aTrack.GetDefinition()->GetBaryonNumber();
70 G4int numberOfCh = G4int(aTrack.GetDefinition()->GetPDGCharge() + 0.5);
71 G4int numberOfHoles = 0;
72
73 A += numberOfEx;
74 Z += numberOfCh;
75
76 G4LorentzVector v = aTrack.Get4Momentum() + G4LorentzVector(0.0,0.0,0.0,nucMass);
77 G4Fragment anInitialState(A,Z,v);
78 anInitialState.SetNumberOfExcitedParticle(numberOfEx,numberOfCh);
79 anInitialState.SetNumberOfHoles(0,0);
80
81 // do the fission
82 G4FragmentVector * theFissionResult = theFission.BreakUp(anInitialState);
83
84 // deexcite the fission fragments and fill result
85
86 G4int ll = theFissionResult->size();
87 for(G4int i=0; i<ll; i++)
88 {
89 G4ReactionProductVector* theExcitationResult = 0;
90 G4Fragment* aFragment = (*theFissionResult)[i];
91 if(aFragment->GetExcitationEnergy() > keV)
92 {
93 theExcitationResult = theHandler.BreakItUp(*aFragment);
94
95 // add secondaries
96 for(G4int j = 0; j < G4int(theExcitationResult->size()); j++)
97 {
98 G4ReactionProduct* rp0 = (*theExcitationResult)[j];
101 theParticleChange.AddSecondary(p0);
102 delete rp0;
103 }
104 delete theExcitationResult;
105 }
106 else
107 {
108 // add secondary
109 G4DynamicParticle* p0 =
111 aFragment->GetMomentum());
112 theParticleChange.AddSecondary(p0);
113 }
114 delete aFragment;
115 }
116
117 delete theFissionResult;
118
119 return &theParticleChange;
120 }
121private:
122
123 G4CompetitiveFission theFission;
124 G4ExcitationHandler theHandler;
125
126 G4HadFinalState theParticleChange;
127};
128#endif
double A(double temperature)
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:63
@ stopAndKill
CLHEP::HepLorentzVector G4LorentzVector
std::vector< G4ReactionProduct * > G4ReactionProductVector
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:275
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:299
void SetNumberOfHoles(G4int valueTot, G4int valueP=0)
Definition: G4Fragment.hh:367
const G4ParticleDefinition * GetParticleDefinition() const
Definition: G4Fragment.hh:430
void SetNumberOfExcitedParticle(G4int valueTot, G4int valueP)
Definition: G4Fragment.hh:348
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
const G4ParticleDefinition * GetDefinition() const
const G4LorentzVector & Get4Momentum() const
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
G4double GetPDGCharge() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const