Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4KleinNishinaCompton.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4KleinNishinaCompton
33//
34// Author: Vladimir Ivanchenko on base of Michel Maire code
35//
36// Creation date: 15.03.2005
37//
38// Modifications:
39// 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
40// 27-03-06 Remove upper limit of cross section (V.Ivantchenko)
41//
42// Class Description:
43//
44// -------------------------------------------------------------------
45//
46//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48
51#include "G4SystemOfUnits.hh"
52#include "G4Electron.hh"
53#include "G4Gamma.hh"
54#include "Randomize.hh"
55#include "G4DataVector.hh"
57#include "G4Log.hh"
58#include "G4Exp.hh"
59
60//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
61
62using namespace std;
63
65 const G4String& nam)
66 : G4VEmModel(nam)
67{
70 lowestSecondaryEnergy = 100.0*eV;
71 fParticleChange = nullptr;
72}
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
75
77{}
78
79//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
80
82 const G4DataVector& cuts)
83{
84 if(IsMaster()) { InitialiseElementSelectors(p, cuts); }
85 if(nullptr == fParticleChange) {
87 }
88}
89
90//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
91
93 G4VEmModel* masterModel)
94{
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
99
102 G4double GammaEnergy,
105{
106 G4double xSection = 0.0 ;
107 if (GammaEnergy <= LowEnergyLimit()) { return xSection; }
108
109 static const G4double a = 20.0 , b = 230.0 , c = 440.0;
110
111 static const G4double
112 d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLHEP::barn,
113 d3= 6.7527 *CLHEP::barn, d4=-1.9798e+1*CLHEP::barn,
114 e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLHEP::barn,
115 e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLHEP::barn,
116 f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLHEP::barn,
117 f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLHEP::barn;
118
119 G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
120 p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
121
122 G4double T0 = 15.0*keV;
123 if (Z < 1.5) { T0 = 40.0*keV; }
124
125 G4double X = max(GammaEnergy, T0) / electron_mass_c2;
126 xSection = p1Z*G4Log(1.+2.*X)/X
127 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
128
129 // modification for low energy. (special case for Hydrogen)
130 if (GammaEnergy < T0) {
131 static const G4double dT0 = keV;
132 X = (T0+dT0) / electron_mass_c2 ;
133 G4double sigma = p1Z*G4Log(1.+2*X)/X
134 + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
135 G4double c1 = -T0*(sigma-xSection)/(xSection*dT0);
136 G4double c2 = 0.150;
137 if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); }
138 G4double y = G4Log(GammaEnergy/T0);
139 xSection *= G4Exp(-y*(c1+c2*y));
140 }
141 // G4cout<<"e= "<< GammaEnergy<<" Z= "<<Z<<" cross= " << xSection << G4endl;
142 return xSection;
143}
144
145//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
146
148 std::vector<G4DynamicParticle*>* fvect,
150 const G4DynamicParticle* aDynamicGamma,
151 G4double,
152 G4double)
153{
154 // The scattered gamma energy is sampled according to Klein - Nishina formula.
155 // The random number techniques of Butcher & Messel are used
156 // (Nuc Phys 20(1960),15).
157 // Note : Effects due to binding of atomic electrons are negliged.
158
159 G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
160
161 // do nothing below the threshold
162 if(gamEnergy0 <= LowEnergyLimit()) { return; }
163
164 G4double E0_m = gamEnergy0 / electron_mass_c2 ;
165
166 G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection();
167
168 //
169 // sample the energy rate of the scattered gamma
170 //
171
172 G4double epsilon, epsilonsq, onecost, sint2, greject ;
173
174 G4double eps0 = 1./(1. + 2.*E0_m);
175 G4double epsilon0sq = eps0*eps0;
176 G4double alpha1 = - G4Log(eps0);
177 G4double alpha2 = alpha1 + 0.5*(1.- epsilon0sq);
178
179 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine();
180 G4double rndm[3];
181
182 static const G4int nlooplim = 1000;
183 G4int nloop = 0;
184 do {
185 ++nloop;
186 // false interaction if too many iterations
187 if(nloop > nlooplim) { return; }
188
189 // 3 random numbers to sample scattering
190 rndmEngineMod->flatArray(3, rndm);
191
192 if ( alpha1 > alpha2*rndm[0] ) {
193 epsilon = G4Exp(-alpha1*rndm[1]); // eps0**r
194 epsilonsq = epsilon*epsilon;
195
196 } else {
197 epsilonsq = epsilon0sq + (1.- epsilon0sq)*rndm[1];
198 epsilon = sqrt(epsilonsq);
199 };
200
201 onecost = (1.- epsilon)/(epsilon*E0_m);
202 sint2 = onecost*(2.-onecost);
203 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
204
205 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
206 } while (greject < rndm[2]);
207
208 //
209 // scattered gamma angles. ( Z - axis along the parent gamma)
210 //
211
212 if(sint2 < 0.0) { sint2 = 0.0; }
213 G4double cosTeta = 1. - onecost;
214 G4double sinTeta = sqrt (sint2);
215 G4double Phi = twopi * rndmEngineMod->flat();
216
217 //
218 // update G4VParticleChange for the scattered gamma
219 //
220
221 G4ThreeVector gamDirection1(sinTeta*cos(Phi), sinTeta*sin(Phi), cosTeta);
222 gamDirection1.rotateUz(gamDirection0);
223 G4double gamEnergy1 = epsilon*gamEnergy0;
224 G4double edep = 0.0;
225 if(gamEnergy1 > lowestSecondaryEnergy) {
228 } else {
231 edep = gamEnergy1;
232 }
233
234 //
235 // kinematic of the scattered electron
236 //
237
238 G4double eKinEnergy = gamEnergy0 - gamEnergy1;
239
240 if(eKinEnergy > lowestSecondaryEnergy) {
241 G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
242 eDirection = eDirection.unit();
243
244 // create G4DynamicParticle object for the electron.
245 G4DynamicParticle* dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
246 fvect->push_back(dp);
247 } else {
248 edep += eKinEnergy;
249 }
250 // energy balance
251 if(edep > 0.0) {
253 }
254}
255
256//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
257
258
double epsilon(double density, double temperature)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A, G4double cut, G4double emax) override
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
G4KleinNishinaCompton(const G4ParticleDefinition *p=nullptr, const G4String &nam="Klein-Nishina")
G4ParticleDefinition * theGamma
G4ParticleChangeForGamma * fParticleChange
G4ParticleDefinition * theElectron
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:842
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:834
G4bool IsMaster() const
Definition: G4VEmModel.hh:736
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)