Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MicroElecElasticModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// G4MicroElecElasticModel.cc, 2011/08/29 A.Valentin, M. Raine
28//
29// Based on the following publications
30// - Geant4 physics processes for microdosimetry simulation:
31// very low energy electromagnetic models for electrons in Si,
32// NIM B, vol. 288, pp. 66 - 73, 2012.
33//
34//
35//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
36
37
40#include "G4SystemOfUnits.hh"
41#include "G4Exp.hh"
42
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44
45using namespace std;
46
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48
50 const G4String& nam)
51:G4VEmModel(nam),isInitialised(false)
52{
54
55 killBelowEnergy = 16.7 * eV; // Minimum e- energy for energy loss by excitation
56 lowEnergyLimit = 0 * eV;
57 lowEnergyLimitOfModel = 5 * eV; // The model lower energy is 5 eV
58 highEnergyLimit = 100. * MeV;
59 SetLowEnergyLimit(lowEnergyLimit);
60 SetHighEnergyLimit(highEnergyLimit);
61
62 verboseLevel= 0;
63 // Verbosity scale:
64 // 0 = nothing
65 // 1 = warning for energy non-conservation
66 // 2 = details of energy budget
67 // 3 = calculation of cross sections, file openings, sampling of atoms
68 // 4 = entering in methods
69
70 if( verboseLevel>0 )
71 {
72 G4cout << "MicroElec Elastic model is constructed " << G4endl
73 << "Energy range: "
74 << lowEnergyLimit / eV << " eV - "
75 << highEnergyLimit / MeV << " MeV"
76 << G4endl;
77 }
79}
80
81//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
82
84{
85 // For total cross section
86
87 std::map< G4String,G4MicroElecCrossSectionDataSet*,std::less<G4String> >::iterator pos;
88 for (pos = tableData.begin(); pos != tableData.end(); ++pos)
89 {
90 G4MicroElecCrossSectionDataSet* table = pos->second;
91 delete table;
92 }
93
94 // For final state
95
96 eVecm.clear();
97
98}
99
100//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
101
103 const G4DataVector& /*cuts*/)
104{
105
106 if (verboseLevel > 3)
107 G4cout << "Calling G4MicroElecElasticModel::Initialise()" << G4endl;
108
109 // Energy limits
110
111 if (LowEnergyLimit() < lowEnergyLimit)
112 {
113 G4cout << "G4MicroElecElasticModel: low energy limit increased from " <<
114 LowEnergyLimit()/eV << " eV to " << lowEnergyLimit/eV << " eV" << G4endl;
115 SetLowEnergyLimit(lowEnergyLimit);
116 }
117
118 if (HighEnergyLimit() > highEnergyLimit)
119 {
120 G4cout << "G4MicroElecElasticModel: high energy limit decreased from " <<
121 HighEnergyLimit()/MeV << " MeV to " << highEnergyLimit/MeV << " MeV" << G4endl;
122 SetHighEnergyLimit(highEnergyLimit);
123 }
124
125 // Reading of data files
126
127 G4double scaleFactor = 1e-18 * cm * cm;
128
129 G4String fileElectron("microelec/sigma_elastic_e_Si");
130
132 G4String electron;
133
134 // For total cross section
135
136 electron = electronDef->GetParticleName();
137
138 tableFile[electron] = fileElectron;
139
141 tableE->LoadData(fileElectron);
142 tableData[electron] = tableE;
143
144 // For final state
145
146 char *path = std::getenv("G4LEDATA");
147
148 if (!path)
149 {
150 G4Exception("G4MicroElecElasticModel::Initialise","em0006",FatalException,"G4LEDATA environment variable not set.");
151 return;
152 }
153
154 std::ostringstream eFullFileName;
155 eFullFileName << path << "/microelec/sigmadiff_cumulated_elastic_e_Si.dat";
156 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
157
158 if (!eDiffCrossSection)
159 G4Exception("G4MicroElecElasticModel::Initialise","em0003",FatalException,"Missing data file: /microelec/sigmadiff_cumulated_elastic_e_Si.dat");
160
161
162 // October 21th, 2014 - Melanie Raine
163 // Added clear for MT
164
165 eTdummyVec.clear();
166 eVecm.clear();
167 eDiffCrossSectionData.clear();
168
169 //
170
171
172 eTdummyVec.push_back(0.);
173
174 while(!eDiffCrossSection.eof())
175 {
176 double tDummy;
177 double eDummy;
178 eDiffCrossSection>>tDummy>>eDummy;
179
180 // SI : mandatory eVecm initialization
181
182 if (tDummy != eTdummyVec.back())
183 {
184 eTdummyVec.push_back(tDummy);
185 eVecm[tDummy].push_back(0.);
186 }
187
188 eDiffCrossSection>>eDiffCrossSectionData[tDummy][eDummy];
189
190 if (eDummy != eVecm[tDummy].back()) eVecm[tDummy].push_back(eDummy);
191
192 }
193
194 // End final state
195
196 if (verboseLevel > 2)
197 G4cout << "Loaded cross section files for MicroElec Elastic model" << G4endl;
198
199 if( verboseLevel>0 )
200 {
201 G4cout << "MicroElec Elastic model is initialized " << G4endl
202 << "Energy range: "
203 << LowEnergyLimit() / eV << " eV - "
204 << HighEnergyLimit() / MeV << " MeV"
205 << G4endl;
206 }
207
208 if (isInitialised) { return; }
210 isInitialised = true;
211
212}
213
214//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
215
217 const G4ParticleDefinition* p,
218 G4double ekin,
219 G4double,
220 G4double)
221{
222 if (verboseLevel > 3)
223 G4cout << "Calling CrossSectionPerVolume() of G4MicroElecElasticModel" << G4endl;
224
225 // Calculate total cross section for model
226
227 G4double sigma=0;
228
229 G4double density = material->GetTotNbOfAtomsPerVolume();
230
231 if (material == nistSi || material->GetBaseMaterial() == nistSi)
232 {
233 const G4String& particleName = p->GetParticleName();
234
235 if (ekin < highEnergyLimit)
236 {
237 //SI : XS must not be zero otherwise sampling of secondaries method ignored
238 if (ekin < killBelowEnergy) return DBL_MAX;
239 //
240
241 std::map< G4String,G4MicroElecCrossSectionDataSet*,std::less<G4String> >::iterator pos;
242 pos = tableData.find(particleName);
243
244 if (pos != tableData.end())
245 {
246 G4MicroElecCrossSectionDataSet* table = pos->second;
247 if (table != 0)
248 {
249 sigma = table->FindValue(ekin);
250 }
251 }
252 else
253 {
254 G4Exception("G4MicroElecElasticModel::ComputeCrossSectionPerVolume","em0002",FatalException,"Model not applicable to particle type.");
255 }
256 }
257
258 if (verboseLevel > 3)
259 {
260 G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl;
261 G4cout << " - Cross section per Si atom (cm^2)=" << sigma/cm/cm << G4endl;
262 G4cout << " - Cross section per Si atom (cm^-1)=" << sigma*density/(1./cm) << G4endl;
263 }
264
265 }
266
267 return sigma*density;
268}
269
270//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
271
272void G4MicroElecElasticModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
273 const G4MaterialCutsCouple* /*couple*/,
274 const G4DynamicParticle* aDynamicElectron,
275 G4double,
276 G4double)
277{
278
279 if (verboseLevel > 3)
280 G4cout << "Calling SampleSecondaries() of G4MicroElecElasticModel" << G4endl;
281
282 G4double electronEnergy0 = aDynamicElectron->GetKineticEnergy();
283
284 if (electronEnergy0 < killBelowEnergy)
285 {
289 return ;
290 }
291
292 if (electronEnergy0>= killBelowEnergy && electronEnergy0 < highEnergyLimit)
293 {
294 G4double cosTheta = RandomizeCosTheta(electronEnergy0);
295
296 G4double phi = 2. * pi * G4UniformRand();
297
298 G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
299 G4ThreeVector xVers = zVers.orthogonal();
300 G4ThreeVector yVers = zVers.cross(xVers);
301
302 G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
303 G4double yDir = xDir;
304 xDir *= std::cos(phi);
305 yDir *= std::sin(phi);
306
307 G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
308
310
312 }
313
314}
315
316//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
317
318G4double G4MicroElecElasticModel::Theta
319 (G4ParticleDefinition * particleDefinition, G4double k, G4double integrDiff)
320{
321
322 G4double theta = 0.;
323 G4double valueT1 = 0;
324 G4double valueT2 = 0;
325 G4double valueE21 = 0;
326 G4double valueE22 = 0;
327 G4double valueE12 = 0;
328 G4double valueE11 = 0;
329 G4double xs11 = 0;
330 G4double xs12 = 0;
331 G4double xs21 = 0;
332 G4double xs22 = 0;
333
334
335 if (particleDefinition == G4Electron::ElectronDefinition())
336 {
337 std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
338 std::vector<double>::iterator t1 = t2-1;
339
340 std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), integrDiff);
341 std::vector<double>::iterator e11 = e12-1;
342
343 std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), integrDiff);
344 std::vector<double>::iterator e21 = e22-1;
345
346 valueT1 =*t1;
347 valueT2 =*t2;
348 valueE21 =*e21;
349 valueE22 =*e22;
350 valueE12 =*e12;
351 valueE11 =*e11;
352
353 xs11 = eDiffCrossSectionData[valueT1][valueE11];
354 xs12 = eDiffCrossSectionData[valueT1][valueE12];
355 xs21 = eDiffCrossSectionData[valueT2][valueE21];
356 xs22 = eDiffCrossSectionData[valueT2][valueE22];
357
358}
359
360 if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
361
362 theta = QuadInterpolator( valueE11, valueE12,
363 valueE21, valueE22,
364 xs11, xs12,
365 xs21, xs22,
366 valueT1, valueT2,
367 k, integrDiff );
368
369 return theta;
370}
371
372//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
373
374G4double G4MicroElecElasticModel::LinLogInterpolate(G4double e1,
375 G4double e2,
376 G4double e,
377 G4double xs1,
378 G4double xs2)
379{
380 G4double d1 = std::log(xs1);
381 G4double d2 = std::log(xs2);
382 G4double value = G4Exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
383 return value;
384}
385
386//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
387
388G4double G4MicroElecElasticModel::LinLinInterpolate(G4double e1,
389 G4double e2,
390 G4double e,
391 G4double xs1,
392 G4double xs2)
393{
394 G4double d1 = xs1;
395 G4double d2 = xs2;
396 G4double value = (d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
397 return value;
398}
399
400//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
401
402G4double G4MicroElecElasticModel::LogLogInterpolate(G4double e1,
403 G4double e2,
404 G4double e,
405 G4double xs1,
406 G4double xs2)
407{
408 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
409 G4double b = std::log10(xs2) - a*std::log10(e2);
410 G4double sigma = a*std::log10(e) + b;
411 G4double value = (std::pow(10.,sigma));
412 return value;
413}
414
415//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
416
417G4double G4MicroElecElasticModel::QuadInterpolator(G4double e11, G4double e12,
418 G4double e21, G4double e22,
419 G4double xs11, G4double xs12,
420 G4double xs21, G4double xs22,
421 G4double t1, G4double t2,
422 G4double t, G4double e)
423{
424 // Log-Log
425/*
426 G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
427 G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
428 G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
429
430
431 // Lin-Log
432 G4double interpolatedvalue1 = LinLogInterpolate(e11, e12, e, xs11, xs12);
433 G4double interpolatedvalue2 = LinLogInterpolate(e21, e22, e, xs21, xs22);
434 G4double value = LinLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
435*/
436
437 // Lin-Lin
438 G4double interpolatedvalue1 = LinLinInterpolate(e11, e12, e, xs11, xs12);
439 G4double interpolatedvalue2 = LinLinInterpolate(e21, e22, e, xs21, xs22);
440 G4double value = LinLinInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
441
442 return value;
443}
444
445//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
446
447G4double G4MicroElecElasticModel::RandomizeCosTheta(G4double k)
448{
449 G4double integrdiff=0;
450 G4double uniformRand=G4UniformRand();
451 integrdiff = uniformRand;
452
453 G4double theta=0.;
454 G4double cosTheta=0.;
455 theta = Theta(G4Electron::ElectronDefinition(),k/eV,integrdiff);
456
457 cosTheta= std::cos(theta*pi/180);
458
459 return cosTheta;
460}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
const G4Material * GetBaseMaterial() const
Definition: G4Material.hh:231
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:207
virtual G4bool LoadData(const G4String &argFileName)
virtual G4double FindValue(G4double e, G4int componentId=0) const
G4ParticleChangeForGamma * fParticleChangeForGamma
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4MicroElecElasticModel(const G4ParticleDefinition *p=0, const G4String &nam="MicroElecElasticModel")
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
G4Material * FindOrBuildMaterial(const G4String &name, G4bool isotopes=true, G4bool warning=false)
static G4NistManager * Instance()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:757
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:645
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:764
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
#define DBL_MAX
Definition: templates.hh:62