Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermorePolarizedRayleighModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Author: Sebastien Incerti
28// 30 October 2008
29// on base of G4LowEnergyPolarizedRayleigh developed by R. Capra
30//
31// History:
32// --------
33// 02 May 2009 S Incerti as V. Ivanchenko proposed in G4LivermoreRayleighModel.cc
34//
35// Cleanup initialisation and generation of secondaries:
36// - apply internal high-energy limit only in constructor
37// - do not apply low-energy limit (default is 0)
38// - remove GetMeanFreePath method and table
39// - remove initialisation of element selector
40// - use G4ElementSelector
41
44#include "G4SystemOfUnits.hh"
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49
50using namespace std;
51
52//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
53
54G4int G4LivermorePolarizedRayleighModel::maxZ = 100;
55G4LPhysicsFreeVector* G4LivermorePolarizedRayleighModel::dataCS[] = {0};
56G4VEMDataSet* G4LivermorePolarizedRayleighModel::formFactorData = 0;
57
59 const G4String& nam)
60 :G4VEmModel(nam),fParticleChange(0),isInitialised(false)
61{
62 fParticleChange =0;
63 lowEnergyLimit = 250 * eV;
64 //SetLowEnergyLimit(lowEnergyLimit);
65 //SetHighEnergyLimit(highEnergyLimit);
66 //
67 verboseLevel= 0;
68 // Verbosity scale:
69 // 0 = nothing
70 // 1 = warning for energy non-conservation
71 // 2 = details of energy budget
72 // 3 = calculation of cross sections, file openings, sampling of atoms
73 // 4 = entering in methods
74
75 if(verboseLevel > 0) {
76 G4cout << "Livermore Polarized Rayleigh is constructed " << G4endl
77 << "Energy range: "
78 << LowEnergyLimit() / eV << " eV - "
79 << HighEnergyLimit() / GeV << " GeV"
80 << G4endl;
81 }
82}
83
84//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
85
87{
88 if(IsMaster()) {
89 for(G4int i=0; i<maxZ; ++i) {
90 if(dataCS[i]) {
91 delete dataCS[i];
92 dataCS[i] = 0;
93 }
94 }
95 delete formFactorData;
96 formFactorData = 0;
97
98 }
99}
100
101//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
102
104 const G4DataVector& cuts)
105{
106// Rayleigh process: The Quantum Theory of Radiation
107// W. Heitler, Oxford at the Clarendon Press, Oxford (1954)
108// Scattering function: A simple model of photon transport
109// D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101 (1995) 499-510
110// Polarization of the outcoming photon: Beam test of a prototype detector array for the PoGO astronomical hard X-ray/soft gamma-ray polarimeter
111// T. Mizuno et al., Nucl. Instr. Meth. in Phys. Res. A 540 (2005) 158-168
112
113 if (verboseLevel > 3)
114 G4cout << "Calling G4LivermorePolarizedRayleighModel::Initialise()" << G4endl;
115
116
117 if(IsMaster()) {
118
119 // Form Factor
120
121 G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation;
122 G4String formFactorFile = "rayl/re-ff-";
123 formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.);
124 formFactorData->LoadData(formFactorFile);
125
126 // Initialise element selector
127 InitialiseElementSelectors(particle, cuts);
128
129 // Access to elements
130 char* path = std::getenv("G4LEDATA");
131 G4ProductionCutsTable* theCoupleTable =
133 G4int numOfCouples = theCoupleTable->GetTableSize();
134
135 for(G4int i=0; i<numOfCouples; ++i)
136 {
137 const G4MaterialCutsCouple* couple =
138 theCoupleTable->GetMaterialCutsCouple(i);
139 const G4Material* material = couple->GetMaterial();
140 const G4ElementVector* theElementVector = material->GetElementVector();
141 G4int nelm = material->GetNumberOfElements();
142
143 for (G4int j=0; j<nelm; ++j)
144 {
145 G4int Z = G4lrint((*theElementVector)[j]->GetZ());
146 if(Z < 1) { Z = 1; }
147 else if(Z > maxZ) { Z = maxZ; }
148 if( (!dataCS[Z]) ) { ReadData(Z, path); }
149 }
150 }
151 }
152
153 if(isInitialised) { return; }
154 fParticleChange = GetParticleChangeForGamma();
155 isInitialised = true;
156
157}
158
159
160//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
161
163 G4VEmModel* masterModel)
164{
166}
167
168//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
169
170void G4LivermorePolarizedRayleighModel::ReadData(size_t Z, const char* path)
171{
172 if (verboseLevel > 1)
173 {
174 G4cout << "Calling ReadData() of G4LivermoreRayleighModel"
175 << G4endl;
176 }
177
178 if(dataCS[Z]) { return; }
179
180 const char* datadir = path;
181
182 if(!datadir)
183 {
184 datadir = std::getenv("G4LEDATA");
185 if(!datadir)
186 {
187 G4Exception("G4LivermoreRayleighModelModel::ReadData()","em0006",
189 "Environment variable G4LEDATA not defined");
190 return;
191 }
192 }
193
194 //
195
196 dataCS[Z] = new G4LPhysicsFreeVector();
197
198 // Activation of spline interpolation
199 //dataCS[Z] ->SetSpline(true);
200
201 std::ostringstream ostCS;
202 ostCS << datadir << "/livermore/rayl/re-cs-" << Z <<".dat";
203 std::ifstream finCS(ostCS.str().c_str());
204
205 if( !finCS .is_open() )
206 {
208 ed << "G4LivermorePolarizedRayleighModel data file <" << ostCS.str().c_str()
209 << "> is not opened!" << G4endl;
210 G4Exception("G4LivermorePolarizedRayleighModel::ReadData()","em0003",FatalException,
211 ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
212 return;
213 }
214 else
215 {
216 if(verboseLevel > 3) {
217 G4cout << "File " << ostCS.str()
218 << " is opened by G4LivermoreRayleighModel" << G4endl;
219 }
220 dataCS[Z]->Retrieve(finCS, true);
221 }
222 }
223
224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
225
228 G4double GammaEnergy,
231 {
232 if (verboseLevel > 1)
233 {
234 G4cout << "G4LivermoreRayleighModel::ComputeCrossSectionPerAtom()"
235 << G4endl;
236 }
237
238 if(GammaEnergy < lowEnergyLimit) { return 0.0; }
239
240 G4double xs = 0.0;
241
242 G4int intZ = G4lrint(Z);
243
244 if(intZ < 1 || intZ > maxZ) { return xs; }
245
246 G4LPhysicsFreeVector* pv = dataCS[intZ];
247
248 // if element was not initialised
249 // do initialisation safely for MT mode
250 if(!pv) {
251 InitialiseForElement(0, intZ);
252 pv = dataCS[intZ];
253 if(!pv) { return xs; }
254 }
255
256 G4int n = pv->GetVectorLength() - 1;
257 G4double e = GammaEnergy/MeV;
258 if(e >= pv->Energy(n)) {
259 xs = (*pv)[n]/(e*e);
260 } else if(e >= pv->Energy(0)) {
261 xs = pv->Value(e)/(e*e);
262 }
263
264 /* if(verboseLevel > 0)
265 {
266 G4cout << "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)="
267 << e << G4endl;
268 G4cout << " cs (Geant4 internal unit)=" << xs << G4endl;
269 G4cout << " -> first E*E*cs value in CS data file (iu) =" << (*pv)[0]
270 << G4endl;
271 G4cout << " -> last E*E*cs value in CS data file (iu) =" << (*pv)[n]
272 << G4endl;
273 G4cout << "*********************************************************"
274 << G4endl;
275 }
276 */
277
278 return xs;
279 }
280
281//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
282
283void G4LivermorePolarizedRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
284 const G4MaterialCutsCouple* couple,
285 const G4DynamicParticle* aDynamicGamma,
286 G4double,
287 G4double)
288{
289 if (verboseLevel > 3)
290 G4cout << "Calling SampleSecondaries() of G4LivermorePolarizedRayleighModel" << G4endl;
291
292 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
293
294 if (photonEnergy0 <= lowEnergyLimit)
295 {
296 fParticleChange->ProposeTrackStatus(fStopAndKill);
297 fParticleChange->SetProposedKineticEnergy(0.);
298 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
299 return ;
300 }
301
302 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
303
304 // Select randomly one element in the current material
305 // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0);
306 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
307 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
308 G4int Z = (G4int)elm->GetZ();
309
310 G4double outcomingPhotonCosTheta = GenerateCosTheta(photonEnergy0, Z);
311 G4double outcomingPhotonPhi = GeneratePhi(outcomingPhotonCosTheta);
312 G4double beta=GeneratePolarizationAngle();
313
314 // incomingPhoton reference frame:
315 // z = versor parallel to the incomingPhotonDirection
316 // x = versor parallel to the incomingPhotonPolarization
317 // y = defined as z^x
318
319 // outgoingPhoton reference frame:
320 // z' = versor parallel to the outgoingPhotonDirection
321 // x' = defined as x-x*z'z' normalized
322 // y' = defined as z'^x'
323
324 G4ThreeVector z(aDynamicGamma->GetMomentumDirection().unit());
325 G4ThreeVector x(GetPhotonPolarization(*aDynamicGamma));
326 G4ThreeVector y(z.cross(x));
327
328 // z' = std::cos(phi)*std::sin(theta) x + std::sin(phi)*std::sin(theta) y + std::cos(theta) z
329 G4double xDir;
330 G4double yDir;
331 G4double zDir;
332 zDir=outcomingPhotonCosTheta;
333 xDir=std::sqrt(1-outcomingPhotonCosTheta*outcomingPhotonCosTheta);
334 yDir=xDir;
335 xDir*=std::cos(outcomingPhotonPhi);
336 yDir*=std::sin(outcomingPhotonPhi);
337
338 G4ThreeVector zPrime((xDir*x + yDir*y + zDir*z).unit());
339 G4ThreeVector xPrime(x.perpPart(zPrime).unit());
340 G4ThreeVector yPrime(zPrime.cross(xPrime));
341
342 // outgoingPhotonPolarization is directed as x' std::cos(beta) + y' std::sin(beta)
343 G4ThreeVector outcomingPhotonPolarization(xPrime*std::cos(beta) + yPrime*std::sin(beta));
344
345 fParticleChange->ProposeMomentumDirection(zPrime);
346 fParticleChange->ProposePolarization(outcomingPhotonPolarization);
347 fParticleChange->SetProposedKineticEnergy(photonEnergy0);
348
349}
350
351//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
352
353G4double G4LivermorePolarizedRayleighModel::GenerateCosTheta(G4double incomingPhotonEnergy, G4int zAtom) const
354{
355 // d sigma k0
356 // --------- = r0^2 * pi * F^2(x, Z) * ( 2 - sin^2 theta) * std::sin (theta), x = ---- std::sin(theta/2)
357 // d theta hc
358
359 // d sigma k0 1 - y
360 // --------- = r0^2 * pi * F^2(x, Z) * ( 1 + y^2), x = ---- std::sqrt ( ------- ), y = std::cos(theta)
361 // d y hc 2
362
363 // Z
364 // F(x, Z) ~ --------
365 // a + bx
366 //
367 // The time to exit from the outer loop grows as ~ k0
368 // On pcgeant2 the time is ~ 1 s for k0 ~ 1 MeV on the oxygen element. A 100 GeV
369 // event will take ~ 10 hours.
370 //
371 // On the avarage the inner loop does 1.5 iterations before exiting
372
373 const G4double xFactor = (incomingPhotonEnergy*cm)/(h_Planck*c_light);
374 //const G4VEMDataSet * formFactorData = GetScatterFunctionData();
375
376 G4double cosTheta;
377 G4double fCosTheta;
378 G4double x;
379 G4double fValue;
380
381 if (incomingPhotonEnergy > 5.*MeV)
382 {
383 cosTheta = 1.;
384 }
385 else
386 {
387 do
388 {
389 do
390 {
391 cosTheta = 2.*G4UniformRand()-1.;
392 fCosTheta = (1.+cosTheta*cosTheta)/2.;
393 }
394 while (fCosTheta < G4UniformRand());
395
396 x = xFactor*std::sqrt((1.-cosTheta)/2.);
397
398 if (x > 1.e+005)
399 fValue = formFactorData->FindValue(x, zAtom-1);
400 else
401 fValue = formFactorData->FindValue(0., zAtom-1);
402
403 fValue/=zAtom;
404 fValue*=fValue;
405 }
406 while(fValue < G4UniformRand());
407 }
408
409 return cosTheta;
410}
411
412//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
413
414G4double G4LivermorePolarizedRayleighModel::GeneratePhi(G4double cosTheta) const
415{
416 // d sigma
417 // --------- = alpha * ( 1 - sin^2 (theta) * cos^2 (phi) )
418 // d phi
419
420 // On the average the loop takes no more than 2 iterations before exiting
421
422 G4double phi;
423 G4double cosPhi;
424 G4double phiProbability;
425 G4double sin2Theta;
426
427 sin2Theta=1.-cosTheta*cosTheta;
428
429 do
430 {
431 phi = twopi * G4UniformRand();
432 cosPhi = std::cos(phi);
433 phiProbability= 1. - sin2Theta*cosPhi*cosPhi;
434 }
435 while (phiProbability < G4UniformRand());
436
437 return phi;
438}
439
440//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
441
442G4double G4LivermorePolarizedRayleighModel::GeneratePolarizationAngle(void) const
443{
444 // Rayleigh polarization is always on the x' direction
445
446 return 0;
447}
448
449//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
450
451G4ThreeVector G4LivermorePolarizedRayleighModel::GetPhotonPolarization(const G4DynamicParticle& photon)
452{
453
454// SI - From G4VLowEnergyDiscretePhotonProcess.cc
455
456 G4ThreeVector photonMomentumDirection;
457 G4ThreeVector photonPolarization;
458
459 photonPolarization = photon.GetPolarization();
460 photonMomentumDirection = photon.GetMomentumDirection();
461
462 if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.)
463 {
464 // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0|
465 // then polarization is choosen randomly.
466
467 G4ThreeVector e1(photonMomentumDirection.orthogonal().unit());
468 G4ThreeVector e2(photonMomentumDirection.cross(e1).unit());
469
470 G4double angle(G4UniformRand() * twopi);
471
472 e1*=std::cos(angle);
473 e2*=std::sin(angle);
474
475 photonPolarization=e1+e2;
476 }
477 else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.)
478 {
479 // if |photonPolarization * photonDirection0| != 0.
480 // then polarization is made orthonormal;
481
482 photonPolarization=photonPolarization.perpPart(photonMomentumDirection);
483 }
484
485 return photonPolarization.unit();
486}
487
488//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
489
490 #include "G4AutoLock.hh"
491 namespace { G4Mutex LivermorePolarizedRayleighModelMutex = G4MUTEX_INITIALIZER; }
492
494 G4int Z)
495 {
496 G4AutoLock l(&LivermorePolarizedRayleighModelMutex);
497 // G4cout << "G4LivermoreRayleighModel::InitialiseForElement Z= "
498 // << Z << G4endl;
499 if(!dataCS[Z]) { ReadData(Z); }
500 l.unlock();
501 }
std::vector< G4Element * > G4ElementVector
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
bool isOrthogonal(const Hep3Vector &v, double epsilon=tolerance) const
Definition: SpaceVector.cc:233
Hep3Vector perpPart() const
double mag() const
double howOrthogonal(const Hep3Vector &v) const
Definition: SpaceVector.cc:215
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:130
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual void InitialiseForElement(const G4ParticleDefinition *, G4int Z)
G4LivermorePolarizedRayleighModel(const G4ParticleDefinition *p=0, const G4String &nam="LivermorePolarizedRayleigh")
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:188
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposePolarization(const G4ThreeVector &dir)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4double Energy(std::size_t index) const
G4double Value(G4double theEnergy, std::size_t &lastidx) const
virtual G4bool Retrieve(std::ifstream &fIn, G4bool ascii=false)
std::size_t GetVectorLength() const
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
virtual G4bool LoadData(const G4String &fileName)=0
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:842
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:834
G4bool IsMaster() const
Definition: G4VEmModel.hh:736
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:645
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:570
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:148
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
int G4lrint(double ad)
Definition: templates.hh:134