Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4WilsonAbrasionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * *
21// * Parts of this code which have been developed by QinetiQ Ltd *
22// * under contract to the European Space Agency (ESA) are the *
23// * intellectual property of ESA. Rights to use, copy, modify and *
24// * redistribute this software for general public use are granted *
25// * in compliance with any licensing, distribution and development *
26// * policy adopted by the Geant4 Collaboration. This code has been *
27// * written by QinetiQ Ltd for the European Space Agency, under ESA *
28// * contract 17191/03/NL/LvH (Aurora Programme). *
29// * *
30// * By using, copying, modifying or distributing the software (or *
31// * any work based on the software) you agree to acknowledge its *
32// * use in resulting scientific publications, and indicate your *
33// * acceptance of all terms of the Geant4 Software license. *
34// ********************************************************************
35//
36// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37//
38// MODULE: G4WilsonAbrasionModel.cc
39//
40// Version: 1.0
41// Date: 08/12/2009
42// Author: P R Truscott
43// Organisation: QinetiQ Ltd, UK
44// Customer: ESA/ESTEC, NOORDWIJK
45// Contract: 17191/03/NL/LvH
46//
47// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48//
49// CHANGE HISTORY
50// --------------
51//
52// 6 October 2003, P R Truscott, QinetiQ Ltd, UK
53// Created.
54//
55// 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56// Beta release
57//
58// 18 January 2005, M H Mendenhall, Vanderbilt University, US
59// Pointers to theAbrasionGeometry and products generated by the deexcitation
60// handler deleted to prevent memory leaks. Also particle change of projectile
61// fragment previously not properly defined.
62//
63// 08 December 2009, P R Truscott, QinetiQ Ltd, Ltd
64// ver 1.0
65// There was originally a possibility of the minimum impact parameter AFTER
66// considering Couloumb repulsion, rm, being too large. Now if:
67// rm >= fradius * (rP + rT)
68// where fradius is currently 0.99, then it is assumed the primary track is
69// unchanged. Additional conditions to escape from while-loop over impact
70// parameter: if the loop counter evtcnt reaches 1000, the primary track is
71// continued.
72// Additional clauses have been included in
73// G4WilsonAbrasionModel::GetNucleonInducedExcitation
74// Previously it was possible to get sqrt of negative number as Wilson
75// algorithm not properly defined if either:
76// rT > rP && rsq < rTsq - rPsq) or (rP > rT && rsq < rPsq - rTsq)
77//
78// 12 June 2012, A. Ribon, CERN, Switzerland
79// Fixing trivial warning errors of shadowed variables.
80//
81// 4 August 2015, A. Ribon, CERN, Switzerland
82// Replacing std::exp and std::pow with the faster versions G4Exp and G4Pow.
83//
84// 7 August 2015, A. Ribon, CERN, Switzerland
85// Checking of 'while' loops.
86//
87// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88///////////////////////////////////////////////////////////////////////////////
89
91#include "G4WilsonRadius.hh"
94
96#include "G4SystemOfUnits.hh"
98#include "G4Evaporation.hh"
100#include "G4DynamicParticle.hh"
101#include "Randomize.hh"
102#include "G4Fragment.hh"
104#include "G4LorentzVector.hh"
105#include "G4ParticleMomentum.hh"
106#include "G4Poisson.hh"
107#include "G4ParticleTable.hh"
108#include "G4IonTable.hh"
109#include "globals.hh"
110
111#include "G4Exp.hh"
112#include "G4Pow.hh"
113
114
116 :G4HadronicInteraction("G4WilsonAbrasion")
117{
118 // Send message to stdout to advise that the G4Abrasion model is being used.
119 PrintWelcomeMessage();
120
121 // Set the default verbose level to 0 - no output.
122 verboseLevel = 0;
123 useAblation = useAblation1;
124 theAblation = nullptr;
125
126 // No de-excitation handler has been supplied - define the default handler.
127
128 theExcitationHandler = new G4ExcitationHandler();
129 if (useAblation)
130 {
131 theAblation = new G4WilsonAblationModel;
132 theAblation->SetVerboseLevel(verboseLevel);
133 theExcitationHandler->SetEvaporation(theAblation, true);
134 }
135
136 // Set the minimum and maximum range for the model (despite nomanclature,
137 // this is in energy per nucleon number).
138
139 SetMinEnergy(70.0*MeV);
140 SetMaxEnergy(10.1*GeV);
141 isBlocked = false;
142
143 // npK, when mutiplied by the nuclear Fermi momentum, determines the range of
144 // momentum over which the secondary nucleon momentum is sampled.
145
146 r0sq = 0.0;
147 npK = 5.0;
148 B = 10.0 * MeV;
149 third = 1.0 / 3.0;
150 fradius = 0.99;
151 conserveEnergy = false;
152 conserveMomentum = true;
153}
154
155void G4WilsonAbrasionModel::ModelDescription(std::ostream& outFile) const
156{
157 outFile << "G4WilsonAbrasionModel is a macroscopic treatment of\n"
158 << "nucleus-nucleus collisions using simple geometric arguments.\n"
159 << "The smaller projectile nucleus gouges out a part of the larger\n"
160 << "target nucleus, leaving a residual nucleus and a fireball\n"
161 << "region where the projectile and target intersect. The fireball"
162 << "is then treated as a highly excited nuclear fragment. This\n"
163 << "model is based on the NUCFRG2 model and is valid for all\n"
164 << "projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
165}
166
168{
169// Send message to stdout to advise that the G4Abrasion model is being used.
170
171 PrintWelcomeMessage();
172
173// Set the default verbose level to 0 - no output.
174
175 verboseLevel = 0;
176
177 theAblation = nullptr; //A.R. 26-Jul-2012 Coverity fix.
178 useAblation = false; //A.R. 14-Aug-2012 Coverity fix.
179
180//
181// The user is able to provide the excitation handler as well as an argument
182// which is provided in this instantiation is used to determine
183// whether the spectators of the interaction are free following the abrasion.
184//
185 theExcitationHandler = aExcitationHandler;
186//
187//
188// Set the minimum and maximum range for the model (despite nomanclature, this
189// is in energy per nucleon number).
190//
191 SetMinEnergy(70.0*MeV);
192 SetMaxEnergy(10.1*GeV);
193 isBlocked = false;
194//
195//
196// npK, when mutiplied by the nuclear Fermi momentum, determines the range of
197// momentum over which the secondary nucleon momentum is sampled.
198//
199 r0sq = 0.0; //A.R. 14-Aug-2012 Coverity fix.
200 npK = 5.0;
201 B = 10.0 * MeV;
202 third = 1.0 / 3.0;
203 fradius = 0.99;
204 conserveEnergy = false;
205 conserveMomentum = true;
206}
207////////////////////////////////////////////////////////////////////////////////
208//
210{
211 delete theExcitationHandler;
212}
213////////////////////////////////////////////////////////////////////////////////
214//
216 const G4HadProjectile &theTrack, G4Nucleus &theTarget)
217{
218//
219//
220// The secondaries will be returned in G4HadFinalState &theParticleChange -
221// initialise this. The original track will always be discontinued and
222// secondaries followed.
223//
226//
227//
228// Get relevant information about the projectile and target (A, Z, energy/nuc,
229// momentum, etc).
230//
231 const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
232 const G4double AP = definitionP->GetBaryonNumber();
233 const G4double ZP = definitionP->GetPDGCharge();
234 G4LorentzVector pP = theTrack.Get4Momentum();
235 G4double E = theTrack.GetKineticEnergy()/AP;
236 G4double AT = theTarget.GetA_asInt();
237 G4double ZT = theTarget.GetZ_asInt();
238 G4double TotalEPre = theTrack.GetTotalEnergy() +
239 theTarget.AtomicMass(AT, ZT) + theTarget.GetEnergyDeposit();
240 G4double TotalEPost = 0.0;
241//
242//
243// Determine the radii of the projectile and target nuclei.
244//
246 G4double rP = aR.GetWilsonRadius(AP);
247 G4double rT = aR.GetWilsonRadius(AT);
248 G4double rPsq = rP * rP;
249 G4double rTsq = rT * rT;
250 if (verboseLevel >= 2)
251 {
252 G4cout <<"########################################"
253 <<"########################################"
254 <<G4endl;
255 G4cout.precision(6);
256 G4cout <<"IN G4WilsonAbrasionModel" <<G4endl;
257 G4cout <<"Initial projectile A=" <<AP
258 <<", Z=" <<ZP
259 <<", radius = " <<rP/fermi <<" fm"
260 <<G4endl;
261 G4cout <<"Initial target A=" <<AT
262 <<", Z=" <<ZT
263 <<", radius = " <<rT/fermi <<" fm"
264 <<G4endl;
265 G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
266 }
267//
268//
269// The following variables are used to determine the impact parameter in the
270// near-field (i.e. taking into consideration the electrostatic repulsion).
271//
272 G4double rm = ZP * ZT * elm_coupling / (E * AP);
273 G4double r = 0.0;
274 G4double rsq = 0.0;
275//
276//
277// Initialise some of the variables which wll be used to calculate the chord-
278// length for nucleons in the projectile and target, and hence calculate the
279// number of abraded nucleons and the excitation energy.
280//
281 G4NuclearAbrasionGeometry *theAbrasionGeometry = nullptr;
282 G4double CT = 0.0;
283 G4double F = 0.0;
284 G4int Dabr = 0;
285//
286//
287// The following loop is performed until the number of nucleons which are
288// abraded by the process is >1, i.e. an interaction MUST occur.
289//
290 G4bool skipInteraction = false; // It will be set true if the two nuclei fail to collide
291 const G4int maxNumberOfLoops = 1000;
292 G4int loopCounter = -1;
293 while (Dabr == 0 && ++loopCounter < maxNumberOfLoops) /* Loop checking, 07.08.2015, A.Ribon */
294 {
295//
296//
297// Sample the impact parameter. For the moment, this class takes account of
298// electrostatic effects on the impact parameter, but (like HZETRN AND NUCFRG2)
299// does not make any correction for the effects of nuclear-nuclear repulsion.
300//
301 G4double rPT = rP + rT;
302 G4double rPTsq = rPT * rPT;
303//
304//
305// This is a "catch" to make sure we don't go into an infinite loop because the
306// energy is too low to overcome nuclear repulsion. PRT 20091023. If the
307// value of rm < fradius * rPT then we're unlikely to sample a small enough
308// impact parameter (energy of incident particle is too low).
309//
310 if (rm >= fradius * rPT) {
311 skipInteraction = true;
312 }
313//
314//
315// Now sample impact parameter until the criterion is met that projectile
316// and target overlap, but repulsion is taken into consideration.
317//
318 G4int evtcnt = 0;
319 r = 1.1 * rPT;
320 while (r > rPT && ++evtcnt < 1000) /* Loop checking, 07.08.2015, A.Ribon */
321 {
322 G4double bsq = rPTsq * G4UniformRand();
323 r = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
324 }
325//
326//
327// We've tried to sample this 1000 times, but failed.
328//
329 if (evtcnt >= 1000) {
330 skipInteraction = true;
331 }
332
333 rsq = r * r;
334//
335//
336// Now determine the chord-length through the target nucleus.
337//
338 if (rT > rP)
339 {
340 G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
341 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
342 else CT = 2.0 * std::sqrt(rTsq - rsq);
343 }
344 else
345 {
346 G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
347 if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
348 else CT = 2.0 * rT;
349 }
350//
351//
352// Determine the number of abraded nucleons. Note that the mean number of
353// abraded nucleons is used to sample the Poisson distribution. The Poisson
354// distribution is sampled only ten times with the current impact parameter,
355// and if it fails after this to find a case for which the number of abraded
356// nucleons >1, the impact parameter is re-sampled.
357//
358 delete theAbrasionGeometry;
359 theAbrasionGeometry = new G4NuclearAbrasionGeometry(AP,AT,r);
360 F = theAbrasionGeometry->F();
361 G4double lambda = 16.6*fermi / G4Pow::GetInstance()->powA(E/MeV,0.26);
362 G4double Mabr = F * AP * (1.0 - G4Exp(-CT/lambda));
363 G4long n = 0;
364 for (G4int i = 0; i<10; ++i)
365 {
366 n = G4Poisson(Mabr);
367 if (n > 0)
368 {
369 if (n>AP) Dabr = (G4int) AP;
370 else Dabr = (G4int) n;
371 break;
372 }
373 }
374 } // End of while loop
375
376 if ( loopCounter >= maxNumberOfLoops || skipInteraction ) {
377 // Assume nuclei do not collide and return unchanged primary.
381 if (verboseLevel >= 2) {
382 G4cout <<"Particle energy too low to overcome repulsion." <<G4endl;
383 G4cout <<"Event rejected and original track maintained" <<G4endl;
384 G4cout <<"########################################"
385 <<"########################################"
386 <<G4endl;
387 }
388 delete theAbrasionGeometry;
389 return &theParticleChange;
390 }
391
392 if (verboseLevel >= 2)
393 {
394 G4cout <<G4endl;
395 G4cout <<"Impact parameter = " <<r/fermi <<" fm" <<G4endl;
396 G4cout <<"# Abraded nucleons = " <<Dabr <<G4endl;
397 }
398//
399//
400// The number of abraded nucleons must be no greater than the number of
401// nucleons in either the projectile or the target. If AP - Dabr < 2 or
402// AT - Dabr < 2 then either we have only a nucleon left behind in the
403// projectile/target or we've tried to abrade too many nucleons - and Dabr
404// should be limited.
405//
406 if (AP - (G4double) Dabr < 2.0) Dabr = (G4int) AP;
407 if (AT - (G4double) Dabr < 2.0) Dabr = (G4int) AT;
408//
409//
410// Determine the abraded secondary nucleons from the projectile. *fragmentP
411// is a pointer to the prefragment from the projectile and nSecP is the number
412// of nucleons in theParticleChange which have been abraded. The total energy
413// from these is determined.
414//
415 G4ThreeVector boost = pP.findBoostToCM();
416 G4Fragment *fragmentP = GetAbradedNucleons (Dabr, AP, ZP, rP);
418 G4int i = 0;
419 for (i=0; i<nSecP; ++i)
420 {
421 TotalEPost += theParticleChange.GetSecondary(i)->
422 GetParticle()->GetTotalEnergy();
423 }
424//
425//
426// Determine the number of spectators in the interaction region for the
427// projectile.
428//
429 G4int DspcP = (G4int) (AP*F) - Dabr;
430 if (DspcP <= 0) DspcP = 0;
431 else if (DspcP > AP-Dabr) DspcP = ((G4int) AP) - Dabr;
432//
433//
434// Determine excitation energy associated with excess surface area of the
435// projectile (EsP) and the excitation due to scattering of nucleons which are
436// retained within the projectile (ExP). Add the total energy from the excited
437// nucleus to the total energy of the secondaries.
438//
439 G4bool excitationAbsorbedByProjectile = false;
440 if (fragmentP != nullptr)
441 {
442 G4double EsP = theAbrasionGeometry->GetExcitationEnergyOfProjectile();
443 G4double ExP = 0.0;
444 if (Dabr < AT)
445 excitationAbsorbedByProjectile = G4UniformRand() < 0.5;
446 if (excitationAbsorbedByProjectile)
447 ExP = GetNucleonInducedExcitation(rP, rT, r);
448 G4double xP = EsP + ExP;
449 if (xP > B*(AP-Dabr)) xP = B*(AP-Dabr);
450 G4LorentzVector lorentzVector = fragmentP->GetMomentum();
451 lorentzVector.setE(lorentzVector.e()+xP);
452 fragmentP->SetMomentum(lorentzVector);
453 TotalEPost += lorentzVector.e();
454 }
455 G4double EMassP = TotalEPost;
456//
457//
458// Determine the abraded secondary nucleons from the target. Note that it's
459// assumed that the same number of nucleons are abraded from the target as for
460// the projectile, and obviously no boost is applied to the products. *fragmentT
461// is a pointer to the prefragment from the target and nSec is the total number
462// of nucleons in theParticleChange which have been abraded. The total energy
463// from these is determined.
464//
465 G4Fragment *fragmentT = GetAbradedNucleons (Dabr, AT, ZT, rT);
467 for (i=nSecP; i<nSec; ++i)
468 {
469 TotalEPost += theParticleChange.GetSecondary(i)->
470 GetParticle()->GetTotalEnergy();
471 }
472//
473//
474// Determine the number of spectators in the interaction region for the
475// target.
476//
477 G4int DspcT = (G4int) (AT*F) - Dabr;
478 if (DspcT <= 0) DspcT = 0;
479 else if (DspcT > AP-Dabr) DspcT = ((G4int) AT) - Dabr;
480//
481//
482// Determine excitation energy associated with excess surface area of the
483// target (EsT) and the excitation due to scattering of nucleons which are
484// retained within the target (ExT). Add the total energy from the excited
485// nucleus to the total energy of the secondaries.
486//
487 if (fragmentT != nullptr)
488 {
489 G4double EsT = theAbrasionGeometry->GetExcitationEnergyOfTarget();
490 G4double ExT = 0.0;
491 if (!excitationAbsorbedByProjectile)
492 ExT = GetNucleonInducedExcitation(rT, rP, r);
493 G4double xT = EsT + ExT;
494 if (xT > B*(AT-Dabr)) xT = B*(AT-Dabr);
495 G4LorentzVector lorentzVector = fragmentT->GetMomentum();
496 lorentzVector.setE(lorentzVector.e()+xT);
497 fragmentT->SetMomentum(lorentzVector);
498 TotalEPost += lorentzVector.e();
499 }
500//
501//
502// Now determine the difference between the pre and post interaction
503// energy - this will be used to determine the Lorentz boost if conservation
504// of energy is to be imposed/attempted.
505//
506 G4double deltaE = TotalEPre - TotalEPost;
507 if (deltaE > 0.0 && conserveEnergy)
508 {
509 G4double beta = std::sqrt(1.0 - EMassP*EMassP/G4Pow::GetInstance()->powN(deltaE+EMassP,2));
510 boost = boost / boost.mag() * beta;
511 }
512//
513//
514// Now boost the secondaries from the projectile.
515//
516 G4ThreeVector pBalance = pP.vect();
517 for (i=0; i<nSecP; ++i)
518 {
520 GetParticle();
521 G4LorentzVector lorentzVector = dynamicP->Get4Momentum();
522 lorentzVector.boost(-boost);
523 dynamicP->Set4Momentum(lorentzVector);
524 pBalance -= lorentzVector.vect();
525 }
526//
527//
528// Set the boost for the projectile prefragment. This is now based on the
529// conservation of momentum. However, if the user selected momentum of the
530// prefragment is not to be conserved this simply boosted to the velocity of the
531// original projectile times the ratio of the unexcited to the excited mass
532// of the prefragment (the excitation increases the effective mass of the
533// prefragment, and therefore modifying the boost is an attempt to prevent
534// the momentum of the prefragment being excessive).
535//
536 if (fragmentP != nullptr)
537 {
538 G4LorentzVector lorentzVector = fragmentP->GetMomentum();
539 G4double fragmentM = lorentzVector.m();
540 if (conserveMomentum)
541 fragmentP->SetMomentum
542 (G4LorentzVector(pBalance,std::sqrt(pBalance.mag2()+fragmentM*fragmentM+1.0*eV*eV)));
543 else
544 {
545 G4double fragmentGroundStateM = fragmentP->GetGroundStateMass();
546 fragmentP->SetMomentum(lorentzVector.boost(-boost * fragmentGroundStateM/fragmentM));
547 }
548 }
549//
550//
551// Output information to user if verbose information requested.
552//
553 if (verboseLevel >= 2)
554 {
555 G4cout <<G4endl;
556 G4cout <<"-----------------------------------" <<G4endl;
557 G4cout <<"Secondary nucleons from projectile:" <<G4endl;
558 G4cout <<"-----------------------------------" <<G4endl;
559 G4cout.precision(7);
560 for (i=0; i<nSecP; ++i)
561 {
562 G4cout <<"Particle # " <<i <<G4endl;
565 G4cout <<"New nucleon (P) " <<dyn->GetDefinition()->GetParticleName()
566 <<" : " <<dyn->Get4Momentum()
567 <<G4endl;
568 }
569 G4cout <<"---------------------------" <<G4endl;
570 G4cout <<"The projectile prefragment:" <<G4endl;
571 G4cout <<"---------------------------" <<G4endl;
572 if (fragmentP != nullptr)
573 G4cout <<*fragmentP <<G4endl;
574 else
575 G4cout <<"(No residual prefragment)" <<G4endl;
576 G4cout <<G4endl;
577 G4cout <<"-------------------------------" <<G4endl;
578 G4cout <<"Secondary nucleons from target:" <<G4endl;
579 G4cout <<"-------------------------------" <<G4endl;
580 G4cout.precision(7);
581 for (i=nSecP; i<nSec; ++i)
582 {
583 G4cout <<"Particle # " <<i <<G4endl;
586 G4cout <<"New nucleon (T) " <<dyn->GetDefinition()->GetParticleName()
587 <<" : " <<dyn->Get4Momentum()
588 <<G4endl;
589 }
590 G4cout <<"-----------------------" <<G4endl;
591 G4cout <<"The target prefragment:" <<G4endl;
592 G4cout <<"-----------------------" <<G4endl;
593 if (fragmentT != nullptr)
594 G4cout <<*fragmentT <<G4endl;
595 else
596 G4cout <<"(No residual prefragment)" <<G4endl;
597 }
598//
599//
600// Now we can decay the nuclear fragments if present. The secondaries are
601// collected and boosted as well. This is performed first for the projectile...
602//
603 if (fragmentP !=nullptr)
604 {
605 G4ReactionProductVector *products = nullptr;
606 // if (fragmentP->GetZ_asInt() != fragmentP->GetA_asInt())
607 products = theExcitationHandler->BreakItUp(*fragmentP);
608 // else
609 // products = theExcitationHandlerx->BreakItUp(*fragmentP);
610 delete fragmentP;
611 fragmentP = nullptr;
612
613 G4ReactionProductVector::iterator iter;
614 for (iter = products->begin(); iter != products->end(); ++iter)
615 {
616 G4DynamicParticle *secondary =
617 new G4DynamicParticle((*iter)->GetDefinition(),
618 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
619 theParticleChange.AddSecondary (secondary); // Added MHM 20050118
620 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
621 delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
622 if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
623 {
624 G4cout <<"------------------------" <<G4endl;
625 G4cout <<"The projectile fragment:" <<G4endl;
626 G4cout <<"------------------------" <<G4endl;
627 G4cout <<" fragmentP = " <<particleName
628 <<" Energy = " <<secondary->GetKineticEnergy()
629 <<G4endl;
630 }
631 }
632 delete products; // Added MHM 20050118
633 }
634//
635//
636// Now decay the target nucleus - no boost is applied since in this
637// approximation it is assumed that there is negligible momentum transfer from
638// the projectile.
639//
640 if (fragmentT != nullptr)
641 {
642 G4ReactionProductVector *products = nullptr;
643 // if (fragmentT->GetZ_asInt() != fragmentT->GetA_asInt())
644 products = theExcitationHandler->BreakItUp(*fragmentT);
645 // else
646 // products = theExcitationHandlerx->BreakItUp(*fragmentT);
647 // delete fragmentT;
648 fragmentT = nullptr;
649
650 G4ReactionProductVector::iterator iter;
651 for (iter = products->begin(); iter != products->end(); ++iter)
652 {
653 G4DynamicParticle *secondary =
654 new G4DynamicParticle((*iter)->GetDefinition(),
655 (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
657 G4String particleName = (*iter)->GetDefinition()->GetParticleName();
658 delete (*iter); // get rid of leftover particle def! // Added MHM 20050118
659 if (verboseLevel >= 2 && particleName.find("[",0) < particleName.size())
660 {
661 G4cout <<"--------------------" <<G4endl;
662 G4cout <<"The target fragment:" <<G4endl;
663 G4cout <<"--------------------" <<G4endl;
664 G4cout <<" fragmentT = " <<particleName
665 <<" Energy = " <<secondary->GetKineticEnergy()
666 <<G4endl;
667 }
668 }
669 delete products; // Added MHM 20050118
670 }
671
672 if (verboseLevel >= 2)
673 G4cout <<"########################################"
674 <<"########################################"
675 <<G4endl;
676
677 delete theAbrasionGeometry;
678 return &theParticleChange;
679}
680////////////////////////////////////////////////////////////////////////////////
681//
682G4Fragment *G4WilsonAbrasionModel::GetAbradedNucleons (G4int Dabr, G4double A,
683 G4double Z, G4double r)
684{
685//
686//
687// Initialise variables. tau is the Fermi radius of the nucleus. The variables
688// p..., C... and gamma are used to help sample the secondary nucleon
689// spectrum.
690//
691
692 G4double pK = hbarc * G4Pow::GetInstance()->A13(9.0 * pi / 4.0 * A) / (1.29 * r);
693 if (A <= 24.0) pK *= -0.229*G4Pow::GetInstance()->A13(A) + 1.62;
694 G4double pKsq = pK * pK;
695 G4double p1sq = 2.0/5.0 * pKsq;
696 G4double p2sq = 6.0/5.0 * pKsq;
697 G4double p3sq = 500.0 * 500.0;
698 G4double C1 = 1.0;
699 G4double C2 = 0.03;
700 G4double C3 = 0.0002;
701 G4double gamma = 90.0 * MeV;
702 G4double maxn = C1 + C2 + C3;
703//
704//
705// initialise the number of secondary nucleons abraded to zero, and initially set
706// the type of nucleon abraded to proton ... just for now.
707//
708 G4double Aabr = 0.0;
709 G4double Zabr = 0.0;
711 G4DynamicParticle *dynamicNucleon = nullptr;
712 G4ParticleMomentum pabr(0.0, 0.0, 0.0);
713//
714//
715// Now go through each abraded nucleon and sample type, spectrum and angle.
716//
717 G4bool isForLoopExitAnticipated = false;
718 for (G4int i=0; i<Dabr; ++i)
719 {
720//
721//
722// Sample the nucleon momentum distribution by simple rejection techniques. We
723// reject values of p == 0.0 since this causes bad behaviour in the sinh term.
724//
725 G4double p = 0.0;
726 G4bool found = false;
727 const G4int maxNumberOfLoops = 100000;
728 G4int loopCounter = -1;
729 while (!found && ++loopCounter < maxNumberOfLoops) /* Loop checking, 07.08.2015, A.Ribon */
730 {
731 while (p <= 0.0) p = npK * pK * G4UniformRand(); /* Loop checking, 07.08.2015, A.Ribon */
732 G4double psq = p * p;
733 found = maxn * G4UniformRand() < C1*G4Exp(-psq/p1sq/2.0) +
734 C2*G4Exp(-psq/p2sq/2.0) + C3*G4Exp(-psq/p3sq/2.0) + p/gamma/(0.5*(G4Exp(p/gamma)-G4Exp(-p/gamma)));
735 }
736 if ( loopCounter >= maxNumberOfLoops )
737 {
738 isForLoopExitAnticipated = true;
739 break;
740 }
741//
742//
743// Determine the type of particle abraded. Can only be proton or neutron,
744// and the probability is determine to be proportional to the ratio as found
745// in the nucleus at each stage.
746//
747 G4double prob = (Z-Zabr)/(A-Aabr);
748 if (G4UniformRand()<prob)
749 {
750 Zabr++;
751 typeNucleon = G4Proton::ProtonDefinition();
752 }
753 else
754 typeNucleon = G4Neutron::NeutronDefinition();
755 Aabr++;
756//
757//
758// The angular distribution of the secondary nucleons is approximated to an
759// isotropic distribution in the rest frame of the nucleus (this will be Lorentz
760// boosted later.
761//
762 G4double costheta = 2.*G4UniformRand()-1.0;
763 G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
764 G4double phi = 2.0*pi*G4UniformRand()*rad;
765 G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
766 G4double nucleonMass = typeNucleon->GetPDGMass();
767 G4double E = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
768 dynamicNucleon = new G4DynamicParticle(typeNucleon,direction,E);
769 theParticleChange.AddSecondary (dynamicNucleon);
770 pabr += p*direction;
771 }
772//
773//
774// Next determine the details of the nuclear prefragment .. that is if there
775// is one or more protons in the residue. (Note that the 1 eV in the total
776// energy is a safety factor to avoid any possibility of negative rest mass
777// energy.)
778//
779 G4Fragment *fragment = nullptr;
780 if ( ! isForLoopExitAnticipated && Z-Zabr>=1.0 )
781 {
783 GetIonMass(G4lrint(Z-Zabr),G4lrint(A-Aabr));
784 G4double E = std::sqrt(pabr.mag2() + ionMass*ionMass);
785 G4LorentzVector lorentzVector = G4LorentzVector(-pabr, E + 1.0*eV);
786 fragment =
787 new G4Fragment((G4int) (A-Aabr), (G4int) (Z-Zabr), lorentzVector);
788 }
789
790 return fragment;
791}
792////////////////////////////////////////////////////////////////////////////////
793//
794G4double G4WilsonAbrasionModel::GetNucleonInducedExcitation
795 (G4double rP, G4double rT, G4double r)
796{
797//
798//
799// Initialise variables.
800//
801 G4double Cl = 0.0;
802 G4double rPsq = rP * rP;
803 G4double rTsq = rT * rT;
804 G4double rsq = r * r;
805//
806//
807// Depending upon the impact parameter, a different form of the chord length is
808// is used.
809//
810 if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
811 else Cl = 2.0*rP;
812//
813//
814// The next lines have been changed to include a "catch" to make sure if the
815// projectile and target are too close, Ct is set to twice rP or twice rT.
816// Otherwise the standard Wilson algorithm should work fine.
817// PRT 20091023.
818//
819 G4double Ct = 0.0;
820 if (rT > rP && rsq < rTsq - rPsq) Ct = 2.0 * rP;
821 else if (rP > rT && rsq < rPsq - rTsq) Ct = 2.0 * rT;
822 else {
823 G4double bP = (rPsq+rsq-rTsq)/2.0/r;
824 G4double x = rPsq - bP*bP;
825 if (x < 0.0) {
826 G4cerr <<"########################################"
827 <<"########################################"
828 <<G4endl;
829 G4cerr <<"ERROR IN G4WilsonAbrasionModel::GetNucleonInducedExcitation"
830 <<G4endl;
831 G4cerr <<"rPsq - bP*bP < 0.0 and cannot be square-rooted" <<G4endl;
832 G4cerr <<"Set to zero instead" <<G4endl;
833 G4cerr <<"########################################"
834 <<"########################################"
835 <<G4endl;
836 }
837 Ct = 2.0*std::sqrt(x);
838 }
839
840 G4double Ex = 13.0 * Cl / fermi;
841 if (Ct > 1.5*fermi)
842 Ex += 13.0 * Cl / fermi /3.0 * (Ct/fermi - 1.5);
843
844 return Ex;
845}
846////////////////////////////////////////////////////////////////////////////////
847//
849{
850 if (useAblation != useAblation1)
851 {
852 useAblation = useAblation1;
853 if (useAblation)
854 {
855 theAblation = new G4WilsonAblationModel;
856 theAblation->SetVerboseLevel(verboseLevel);
857 theExcitationHandler->SetEvaporation(theAblation);
858 }
859 else
860 {
861 delete theExcitationHandler;
862 theAblation = nullptr;
863 theExcitationHandler = new G4ExcitationHandler();
864 }
865 }
866 return;
867}
868////////////////////////////////////////////////////////////////////////////////
869//
870void G4WilsonAbrasionModel::PrintWelcomeMessage ()
871{
872 G4cout <<G4endl;
873 G4cout <<" *****************************************************************"
874 <<G4endl;
875 G4cout <<" Nuclear abrasion model for nuclear-nuclear interactions activated"
876 <<G4endl;
877 G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
878 <<G4endl;
879 G4cout <<" *****************************************************************"
880 <<G4endl;
881 G4cout << G4endl;
882
883 return;
884}
885////////////////////////////////////////////////////////////////////////////////
886//
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
@ stopAndKill
CLHEP::HepLorentzVector G4LorentzVector
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:50
std::vector< G4ReactionProduct * > G4ReactionProductVector
double G4double
Definition: G4Types.hh:83
long G4long
Definition: G4Types.hh:87
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
const double C2
#define C1
#define C3
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag2() const
double mag() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
Hep3Vector findBoostToCM() const
void DumpInfo(G4int mode=0) const
G4ParticleDefinition * GetDefinition() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void Set4Momentum(const G4LorentzVector &momentum)
void SetEvaporation(G4VEvaporation *ptr, G4bool isLocal=false)
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
G4double GetGroundStateMass() const
Definition: G4Fragment.hh:280
const G4LorentzVector & GetMomentum() const
Definition: G4Fragment.hh:299
void SetMomentum(const G4LorentzVector &value)
Definition: G4Fragment.hh:304
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
void SetEnergyChange(G4double anEnergy)
G4HadSecondary * GetSecondary(size_t i)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4DynamicParticle * GetParticle()
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
static G4Neutron * NeutronDefinition()
Definition: G4Neutron.cc:98
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetEnergyDeposit()
Definition: G4Nucleus.hh:184
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:254
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A13(G4double A) const
Definition: G4Pow.cc:120
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:87
virtual void ModelDescription(std::ostream &) const
G4WilsonAbrasionModel(G4bool useAblation1=false)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &, G4Nucleus &)
G4double GetWilsonRadius(G4double A)
const G4double pi
int G4lrint(double ad)
Definition: templates.hh:134