Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGOmegaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50// G4double targetMass = originalTarget->GetDefinition()->GetPDGMass();
51 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
52
53 if( verboseLevel > 1 )
54 {
55 const G4Material *targetMaterial = aTrack.GetMaterial();
56 G4cout << "G4RPGOmegaMinusInelastic::ApplyYourself called" << G4endl;
57 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
58 G4cout << "target material = " << targetMaterial->GetName() << ", ";
59 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
60 << G4endl;
61 }
62
63 G4ReactionProduct currentParticle(originalIncident->GetDefinition() );
64 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
65 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
66
67 // Fermi motion and evaporation
68 // As of Geant3, the Fermi energy calculation had not been Done
69
70 G4double ek = originalIncident->GetKineticEnergy();
71 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
72
73 G4double tkin = targetNucleus.Cinema( ek );
74 ek += tkin;
75 currentParticle.SetKineticEnergy( ek );
76 G4double et = ek + amas;
77 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
78 G4double pp = currentParticle.GetMomentum().mag();
79 if( pp > 0.0 )
80 {
81 G4ThreeVector momentum = currentParticle.GetMomentum();
82 currentParticle.SetMomentum( momentum * (p/pp) );
83 }
84
85 // calculate black track energies
86
87 tkin = targetNucleus.EvaporationEffects( ek );
88 ek -= tkin;
89 currentParticle.SetKineticEnergy( ek );
90 et = ek + amas;
91 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
92 pp = currentParticle.GetMomentum().mag();
93 if( pp > 0.0 )
94 {
95 G4ThreeVector momentum = currentParticle.GetMomentum();
96 currentParticle.SetMomentum( momentum * (p/pp) );
97 }
98
99 G4ReactionProduct modifiedOriginal = currentParticle;
100
101 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
102 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
103 G4bool incidentHasChanged = false;
104 G4bool targetHasChanged = false;
105 G4bool quasiElastic = false;
106 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
107 G4int vecLen = 0;
108 vec.Initialize( 0 );
109
110 const G4double cutOff = 0.1*MeV;
111 if( currentParticle.GetKineticEnergy() > cutOff )
112 Cascade( vec, vecLen,
113 originalIncident, currentParticle, targetParticle,
114 incidentHasChanged, targetHasChanged, quasiElastic );
115
116 CalculateMomenta( vec, vecLen,
117 originalIncident, originalTarget, modifiedOriginal,
118 targetNucleus, currentParticle, targetParticle,
119 incidentHasChanged, targetHasChanged, quasiElastic );
120
121 SetUpChange( vec, vecLen,
122 currentParticle, targetParticle,
123 incidentHasChanged );
124
125 delete originalTarget;
126 return &theParticleChange;
127}
128
129
130void G4RPGOmegaMinusInelastic::Cascade(
132 G4int& vecLen,
133 const G4HadProjectile *originalIncident,
134 G4ReactionProduct &currentParticle,
135 G4ReactionProduct &targetParticle,
136 G4bool &incidentHasChanged,
137 G4bool &targetHasChanged,
138 G4bool &quasiElastic )
139{
140 // Derived from H. Fesefeldt's original FORTRAN code CASOM
141 // OmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
142 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
143 // occurs and input particle is degraded in energy. No other particles are produced.
144 // If reaction is possible, find the correct number of pions/protons/neutrons
145 // produced using an interpolation to multiplicity data. Replace some pions or
146 // protons/neutrons by kaons or strange baryons according to the average
147 // multiplicity per Inelastic reaction.
148
149 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
150 const G4double etOriginal = originalIncident->GetTotalEnergy();
151// const G4double pOriginal = originalIncident->GetTotalMomentum();
152 const G4double targetMass = targetParticle.GetMass();
153 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
154 targetMass*targetMass +
155 2.0*targetMass*etOriginal );
156 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
157 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass() )
158 {
159 quasiElastic = true;
160 return;
161 }
162 static G4ThreadLocal G4bool first = true;
163 const G4int numMul = 1200;
164 const G4int numSec = 60;
165 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
166 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
167 // np = number of pi+, nneg = number of pi-, nz = number of pi0
168 G4int counter, nt=0, np=0, nneg=0, nz=0;
169 G4double test;
170 const G4double c = 1.25;
171 const G4double b[] = { 0.70, 0.70 };
172 if( first ) // compute normalization constants, this will only be Done once
173 {
174 first = false;
175 G4int i;
176 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
177 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
178 counter = -1;
179 for( np=0; np<(numSec/3); ++np )
180 {
181 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
182 {
183 for( nz=0; nz<numSec/3; ++nz )
184 {
185 if( ++counter < numMul )
186 {
187 nt = np+nneg+nz;
188 if( nt > 0 )
189 {
190 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
191 protnorm[nt-1] += protmul[counter];
192 }
193 }
194 }
195 }
196 }
197 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
198 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
199 counter = -1;
200 for( np=0; np<numSec/3; ++np )
201 {
202 for( nneg=np; nneg<=(np+2); ++nneg )
203 {
204 for( nz=0; nz<numSec/3; ++nz )
205 {
206 if( ++counter < numMul )
207 {
208 nt = np+nneg+nz;
209 if( (nt>0) && (nt<=numSec) )
210 {
211 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
212 neutnorm[nt-1] += neutmul[counter];
213 }
214 }
215 }
216 }
217 }
218 for( i=0; i<numSec; ++i )
219 {
220 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
221 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
222 }
223 } // end of initialization
224
225 const G4double expxu = 82.; // upper bound for arg. of exp
226 const G4double expxl = -expxu; // lower bound for arg. of exp
233
234 // energetically possible to produce pion(s) --> inelastic scattering
235
236 G4double n, anpn;
237 GetNormalizationConstant( availableEnergy, n, anpn );
238 G4double ran = G4UniformRand();
239 G4double dum, excs = 0.0;
240 if( targetParticle.GetDefinition() == aProton )
241 {
242 counter = -1;
243 for( np=0; np<numSec/3 && ran>=excs; ++np )
244 {
245 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
246 {
247 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
248 {
249 if( ++counter < numMul )
250 {
251 nt = np+nneg+nz;
252 if( nt > 0 )
253 {
254 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
255 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
256 if( std::fabs(dum) < 1.0 )
257 {
258 if( test >= 1.0e-10 )excs += dum*test;
259 }
260 else
261 excs += dum*test;
262 }
263 }
264 }
265 }
266 }
267 if( ran >= excs ) // 3 previous loops continued to the end
268 {
269 quasiElastic = true;
270 return;
271 }
272 np--; nneg--; nz--;
273 }
274 else // target must be a neutron
275 {
276 counter = -1;
277 for( np=0; np<numSec/3 && ran>=excs; ++np )
278 {
279 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
280 {
281 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
282 {
283 if( ++counter < numMul )
284 {
285 nt = np+nneg+nz;
286 if( (nt>=1) && (nt<=numSec) )
287 {
288 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
289 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
290 if( std::fabs(dum) < 1.0 )
291 {
292 if( test >= 1.0e-10 )excs += dum*test;
293 }
294 else
295 excs += dum*test;
296 }
297 }
298 }
299 }
300 }
301 if( ran >= excs ) // 3 previous loops continued to the end
302 {
303 quasiElastic = true;
304 return;
305 }
306 np--; nneg--; nz--;
307 }
308 // number of secondary mesons determined by kno distribution
309 // check for total charge of final state mesons to determine
310 // the kind of baryons to be produced, taking into account
311 // charge and strangeness conservation
312 //
313 G4int nvefix = 0;
314 if( targetParticle.GetDefinition() == aProton )
315 {
316 if( nneg > np )
317 {
318 if( nneg == np+1 )
319 {
320 currentParticle.SetDefinitionAndUpdateE( aXiZero );
321 nvefix = 1;
322 }
323 else
324 {
325 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
326 nvefix = 2;
327 }
328 incidentHasChanged = true;
329 }
330 else if( nneg < np )
331 {
332 targetParticle.SetDefinitionAndUpdateE( aNeutron );
333 targetHasChanged = true;
334 }
335 }
336 else // target is a neutron
337 {
338 if( np+1 < nneg )
339 {
340 if( nneg == np+2 )
341 {
342 currentParticle.SetDefinitionAndUpdateE( aXiZero );
343 incidentHasChanged = true;
344 nvefix = 1;
345 }
346 else // charge mismatch
347 {
348 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
349 incidentHasChanged = true;
350 nvefix = 2;
351 }
352 targetParticle.SetDefinitionAndUpdateE( aProton );
353 targetHasChanged = true;
354 }
355 else if( nneg == np+1 )
356 {
357 targetParticle.SetDefinitionAndUpdateE( aProton );
358 targetHasChanged = true;
359 }
360 }
361
362 SetUpPions(np, nneg, nz, vec, vecLen);
363 for (G4int i = 0; i < vecLen && nvefix > 0; ++i) {
364 if (vec[i]->GetDefinition() == aPiMinus) {
365 if( nvefix >= 1 )vec[i]->SetDefinitionAndUpdateE(aKaonMinus);
366 --nvefix;
367 }
368 }
369
370 return;
371}
372
373 /* end of file */
374
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:112
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Proton * Proton()
Definition: G4Proton.cc:92
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:107
static G4XiZero * XiZero()
Definition: G4XiZero.cc:105
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77