Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PreCompoundFragment.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// J. M. Quesada (August 2008).
28// Based on previous work by V. Lara
29//
30// Modified:
31// 06.09.2008 JMQ Also external choice has been added for:
32// - superimposed Coulomb barrier (if useSICB=true)
33// 20.08.2010 V.Ivanchenko cleanup
34//
35
40#include "Randomize.hh"
41
43 G4VCoulombBarrier* aCoulBarrier)
44 : G4VPreCompoundFragment(p, aCoulBarrier)
45{
46 muu = probmax = 0.0;
47 if(0 == theZ) { index = 0; }
48 else if(1 == theZ) { index = theA; }
49 else { index = theA + 1; }
50}
51
53{}
54
56CalcEmissionProbability(const G4Fragment & aFragment)
57{
58 //G4cout << theCoulombBarrier << " " << GetMaximalKineticEnergy() << G4endl;
59 // If theCoulombBarrier effect is included in the emission probabilities
60 // Coulomb barrier is the lower limit of integration over kinetic energy
61
63
64 if (theMaxKinEnergy <= theMinKinEnergy) { return 0.0; }
65
66 // compute power once
67 if(0 < index) {
69 }
70
72 IntegrateEmissionProbability(theMinKinEnergy,theMaxKinEnergy,aFragment);
73 /*
74 G4cout << "## G4PreCompoundFragment::CalcEmisProb "
75 << "Z= " << aFragment.GetZ_asInt()
76 << " A= " << aFragment.GetA_asInt()
77 << " Elow= " << LowerLimit/MeV
78 << " Eup= " << UpperLimit/MeV
79 << " prob= " << theEmissionProbability
80 << G4endl;
81 */
83}
84
85G4double G4PreCompoundFragment::
86IntegrateEmissionProbability(G4double low, G4double up,
87 const G4Fragment & aFragment)
88{
89 static const G4double den = 1.0/CLHEP::MeV;
90 G4double del = (up - low);
91 G4int nbins = std::max(4,(G4int)(del*den));
92 del /= (G4double)nbins;
93 G4double e = low + 0.5*del;
94 probmax = ProbabilityDistributionFunction(e, aFragment);
95 //G4cout << " 0. e= " << e << " y= " << probmax << G4endl;
96
97 G4double sum = probmax;
98 for (G4int i=1; i<nbins; ++i) {
99 e += del;
100
101 G4double y = ProbabilityDistributionFunction(e, aFragment);
102 probmax = std::max(probmax, y);
103 sum += y;
104 if(y < sum*0.01) { break; }
105 //G4cout << " " << i << ". e= " << e << " y= " << y << " sum= " << sum << G4endl;
106 }
107 sum *= del;
108 //G4cout << "Evap prob: " << sum << " probmax= " << probmax << G4endl;
109 return sum;
110}
111
113{
114 G4double res;
115 if(OPTxs == 0 || (OPTxs == 4 && theMaxKinEnergy < 10.)) {
116 res = GetOpt0(ekin);
117
118 } else if(OPTxs <= 2) {
120 theResA13, muu,
121 index, theZ, theResA);
122
123 } else {
125 theResA13, muu,
126 index, theZ, theA, theResA);
127 }
128 return res;
129}
130
131// *********************** OPT=0 : Dostrovski's cross section ***************
132G4double G4PreCompoundFragment::GetOpt0(G4double ekin) const
133{
135 // cross section is now given in mb (r0 is in mm) for the sake of consistency
136 //with the rest of the options
137 return 1.e+25*CLHEP::pi*r0*r0*theResA13*GetAlpha()*(1.0 + GetBeta()/ekin);
138}
139
141{
143 static const G4double toler = 1.25;
144 probmax *= toler;
145 G4double prob, T(0.0);
146 CLHEP::HepRandomEngine* rndm = G4Random::getTheEngine();
147 G4int i;
148 for(i=0; i<100; ++i) {
149 T = theMinKinEnergy + delta*rndm->flat();
150 prob = ProbabilityDistributionFunction(T, fragment);
151 /*
152 if(prob > probmax) {
153 G4cout << "G4PreCompoundFragment WARNING: prob= " << prob
154 << " probmax= " << probmax << G4endl;
155 G4cout << "i= " << i << " Z= " << theZ << " A= " << theA
156 << " resZ= " << theResZ << " resA= " << theResA << "\n"
157 << " T= " << T << " Tmax= " << theMaxKinEnergy
158 << " Tmin= " << limit
159 << G4endl;
160 for(G4int i=0; i<N; ++i) { G4cout << " " << probability[i]; }
161 G4cout << G4endl;
162 }
163 */
164 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
165 if(probmax*rndm->flat() <= prob) { break; }
166 }
167 /*
168 G4cout << "G4PreCompoundFragment: i= " << i << " Z= " << theZ << " A= " << theA
169 <<" T(MeV)= " << T << " Emin(MeV)= " << theMinKinEnergy << " Emax= "
170 << theMaxKinEnergy << G4endl;
171 */
172 return T;
173}
174
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
virtual double flat()=0
static G4double ComputeCrossSection(G4double K, G4double cb, G4double resA13, G4double amu1, G4int idx, G4int Z, G4int resA)
static G4double ComputePowerParameter(G4int resA, G4int idx)
static G4double ComputeCrossSection(G4double K, G4double cb, G4double resA13, G4double amu1, G4int idx, G4int Z, G4int A, G4int resA)
G4double CalcEmissionProbability(const G4Fragment &aFragment)
G4PreCompoundFragment(const G4ParticleDefinition *, G4VCoulombBarrier *aCoulombBarrier)
virtual G4double GetBeta() const =0
G4double CrossSection(G4double ekin) const
virtual G4double ProbabilityDistributionFunction(G4double K, const G4Fragment &aFragment)=0
virtual G4double GetAlpha() const =0
G4double SampleKineticEnergy(const G4Fragment &aFragment)
G4DeexPrecoParameters * theParameters