Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Torus.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4Torus implementation
27//
28// 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs
29// 26.05.00 V.Grichine: added new fuctions developed by O.Cremonesi
30// 31.08.00 E.Medernach: numerical computation of roots with bounding volume
31// 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots
32// 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal
33// 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver
34// 28.10.16 E.Tcherniaev: new CalculateExtent(); removed CreateRotatedVertices()
35// 16.12.16 H.Burkhardt: use radius differences and hypot to improve precision
36// --------------------------------------------------------------------
37
38#include "G4Torus.hh"
39
40#if !(defined(G4GEOM_USE_UTORUS) && defined(G4GEOM_USE_SYS_USOLIDS))
41
42#include "G4GeomTools.hh"
43#include "G4VoxelLimits.hh"
44#include "G4AffineTransform.hh"
45#include "G4BoundingEnvelope.hh"
48
50
51#include "meshdefs.hh"
52
53#include "Randomize.hh"
54
55#include "G4VGraphicsScene.hh"
56#include "G4Polyhedron.hh"
57
58using namespace CLHEP;
59
60///////////////////////////////////////////////////////////////
61//
62// Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
63// - note if pdphi>2PI then reset to 2PI
64
66 G4double pRmin,
67 G4double pRmax,
68 G4double pRtor,
69 G4double pSPhi,
70 G4double pDPhi)
71 : G4CSGSolid(pName)
72{
73 SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi);
74}
75
76////////////////////////////////////////////////////////////////////////////
77//
78//
79
80void
82 G4double pRmax,
83 G4double pRtor,
84 G4double pSPhi,
85 G4double pDPhi )
86{
87 const G4double fEpsilon = 4.e-11; // relative tolerance of radii
88
89 fCubicVolume = 0.;
90 fSurfaceArea = 0.;
91 fRebuildPolyhedron = true;
92
95
96 halfCarTolerance = 0.5*kCarTolerance;
97 halfAngTolerance = 0.5*kAngTolerance;
98
99 if ( pRtor >= pRmax+1.e3*kCarTolerance ) // Check swept radius, as in G4Cons
100 {
101 fRtor = pRtor ;
102 }
103 else
104 {
105 std::ostringstream message;
106 message << "Invalid swept radius for Solid: " << GetName() << G4endl
107 << " pRtor = " << pRtor << ", pRmax = " << pRmax;
108 G4Exception("G4Torus::SetAllParameters()",
109 "GeomSolids0002", FatalException, message);
110 }
111
112 // Check radii, as in G4Cons
113 //
114 if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 )
115 {
116 if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; }
117 else { fRmin = 0.0 ; }
118 fRmax = pRmax ;
119 }
120 else
121 {
122 std::ostringstream message;
123 message << "Invalid values of radii for Solid: " << GetName() << G4endl
124 << " pRmin = " << pRmin << ", pRmax = " << pRmax;
125 G4Exception("G4Torus::SetAllParameters()",
126 "GeomSolids0002", FatalException, message);
127 }
128
129 // Relative tolerances
130 //
131 fRminTolerance = (fRmin)
132 ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0;
133 fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) );
134
135 // Check angles
136 //
137 if ( pDPhi >= twopi ) { fDPhi = twopi ; }
138 else
139 {
140 if (pDPhi > 0) { fDPhi = pDPhi ; }
141 else
142 {
143 std::ostringstream message;
144 message << "Invalid Z delta-Phi for Solid: " << GetName() << G4endl
145 << " pDPhi = " << pDPhi;
146 G4Exception("G4Torus::SetAllParameters()",
147 "GeomSolids0002", FatalException, message);
148 }
149 }
150
151 // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0
152 //
153 fSPhi = pSPhi;
154
155 if (fSPhi < 0) { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; }
156 else { fSPhi = std::fmod(fSPhi,twopi) ; }
157
158 if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; }
159}
160
161///////////////////////////////////////////////////////////////////////
162//
163// Fake default constructor - sets only member data and allocates memory
164// for usage restricted to object persistency.
165//
166G4Torus::G4Torus( __void__& a )
167 : G4CSGSolid(a), fRmin(0.), fRmax(0.), fRtor(0.), fSPhi(0.),
168 fDPhi(0.), fRminTolerance(0.), fRmaxTolerance(0. ),
169 kRadTolerance(0.), kAngTolerance(0.),
170 halfCarTolerance(0.), halfAngTolerance(0.)
171{
172}
173
174//////////////////////////////////////////////////////////////////////
175//
176// Destructor
177
179{}
180
181//////////////////////////////////////////////////////////////////////////
182//
183// Copy constructor
184
186 : G4CSGSolid(rhs), fRmin(rhs.fRmin),fRmax(rhs.fRmax),
187 fRtor(rhs.fRtor), fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi),
188 fRminTolerance(rhs.fRminTolerance), fRmaxTolerance(rhs.fRmaxTolerance),
189 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance),
190 halfCarTolerance(rhs.halfCarTolerance),
191 halfAngTolerance(rhs.halfAngTolerance)
192{
193}
194
195//////////////////////////////////////////////////////////////////////////
196//
197// Assignment operator
198
200{
201 // Check assignment to self
202 //
203 if (this == &rhs) { return *this; }
204
205 // Copy base class data
206 //
208
209 // Copy data
210 //
211 fRmin = rhs.fRmin; fRmax = rhs.fRmax;
212 fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;
213 fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance;
214 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance;
215 halfCarTolerance = rhs.halfCarTolerance;
216 halfAngTolerance = rhs.halfAngTolerance;
217
218 return *this;
219}
220
221//////////////////////////////////////////////////////////////////////
222//
223// Dispatch to parameterisation for replication mechanism dimension
224// computation & modification.
225
227 const G4int n,
228 const G4VPhysicalVolume* pRep )
229{
230 p->ComputeDimensions(*this,n,pRep);
231}
232
233
234
235////////////////////////////////////////////////////////////////////////////////
236//
237// Calculate the real roots to torus surface.
238// Returns negative solutions as well.
239
240void G4Torus::TorusRootsJT( const G4ThreeVector& p,
241 const G4ThreeVector& v,
242 G4double r,
243 std::vector<G4double>& roots ) const
244{
245
246 G4int i, num ;
247 G4double c[5], srd[4], si[4] ;
248
249 G4double Rtor2 = fRtor*fRtor, r2 = r*r ;
250
251 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
252 G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ;
253
254 G4double d=pRad2 - Rtor2;
255 c[0] = 1.0 ;
256 c[1] = 4*pDotV ;
257 c[2] = 2*( (d + 2*pDotV*pDotV - r2) + 2*Rtor2*v.z()*v.z());
258 c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z()) ;
259 c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r2);
260
261 G4JTPolynomialSolver torusEq;
262
263 num = torusEq.FindRoots( c, 4, srd, si );
264
265 for ( i = 0; i < num; ++i )
266 {
267 if( si[i] == 0. ) { roots.push_back(srd[i]) ; } // store real roots
268 }
269
270 std::sort(roots.begin() , roots.end() ) ; // sorting with <
271}
272
273//////////////////////////////////////////////////////////////////////////////
274//
275// Interface for DistanceToIn and DistanceToOut.
276// Calls TorusRootsJT and returns the smalles possible distance to
277// the surface.
278// Attention: Difference in DistanceToIn/Out for points p on the surface.
279
280G4double G4Torus::SolveNumericJT( const G4ThreeVector& p,
281 const G4ThreeVector& v,
282 G4double r,
283 G4bool IsDistanceToIn ) const
284{
285 G4double bigdist = 10*mm ;
286 G4double tmin = kInfinity ;
287 G4double t, scal ;
288
289 // calculate the distances to the intersections with the Torus
290 // from a given point p and direction v.
291 //
292 std::vector<G4double> roots ;
293 std::vector<G4double> rootsrefined ;
294 TorusRootsJT(p,v,r,roots) ;
295
296 G4ThreeVector ptmp ;
297
298 // determine the smallest non-negative solution
299 //
300 for ( size_t k = 0 ; k<roots.size() ; ++k )
301 {
302 t = roots[k] ;
303
304 if ( t < -halfCarTolerance ) { continue ; } // skip negative roots
305
306 if ( t > bigdist && t<kInfinity ) // problem with big distances
307 {
308 ptmp = p + t*v ;
309 TorusRootsJT(ptmp,v,r,rootsrefined) ;
310 if ( rootsrefined.size()==roots.size() )
311 {
312 t = t + rootsrefined[k] ;
313 }
314 }
315
316 ptmp = p + t*v ; // calculate the position of the proposed intersection
317
318 G4double theta = std::atan2(ptmp.y(),ptmp.x());
319
320 if ( fSPhi >= 0 )
321 {
322 if ( theta < - halfAngTolerance ) { theta += twopi; }
323 if ( (std::fabs(theta) < halfAngTolerance)
324 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
325 {
326 theta += twopi ; // 0 <= theta < 2pi
327 }
328 }
329 if ((fSPhi <= -pi )&&(theta>halfAngTolerance)) { theta = theta-twopi; }
330
331 // We have to verify if this root is inside the region between
332 // fSPhi and fSPhi + fDPhi
333 //
334 if ( (theta - fSPhi >= - halfAngTolerance)
335 && (theta - (fSPhi + fDPhi) <= halfAngTolerance) )
336 {
337 // check if P is on the surface, and called from DistanceToIn
338 // DistanceToIn has to return 0.0 if particle is going inside the solid
339
340 if ( IsDistanceToIn == true )
341 {
342 if (std::fabs(t) < halfCarTolerance )
343 {
344 // compute scalar product at position p : v.n
345 // ( n taken from SurfaceNormal, not normalized )
346
347 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())),
348 p.y()*(1-fRtor/std::hypot(p.x(),p.y())),
349 p.z() );
350
351 // change sign in case of inner radius
352 //
353 if ( r == GetRmin() ) { scal = -scal ; }
354 if ( scal < 0 ) { return 0.0 ; }
355 }
356 }
357
358 // check if P is on the surface, and called from DistanceToOut
359 // DistanceToIn has to return 0.0 if particle is leaving the solid
360
361 if ( IsDistanceToIn == false )
362 {
363 if (std::fabs(t) < halfCarTolerance )
364 {
365 // compute scalar product at position p : v.n
366 //
367 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())),
368 p.y()*(1-fRtor/std::hypot(p.x(),p.y())),
369 p.z() );
370
371 // change sign in case of inner radius
372 //
373 if ( r == GetRmin() ) { scal = -scal ; }
374 if ( scal > 0 ) { return 0.0 ; }
375 }
376 }
377
378 // check if distance is larger than 1/2 kCarTolerance
379 //
380 if( t > halfCarTolerance )
381 {
382 tmin = t ;
383 return tmin ;
384 }
385 }
386 }
387
388 return tmin;
389}
390
391/////////////////////////////////////////////////////////////////////////////
392//
393// Get bounding box
394
396{
397 G4double rmax = GetRmax();
398 G4double rtor = GetRtor();
399 G4double rint = rtor - rmax;
400 G4double rext = rtor + rmax;
401 G4double dz = rmax;
402
403 // Find bounding box
404 //
405 if (GetDPhi() >= twopi)
406 {
407 pMin.set(-rext,-rext,-dz);
408 pMax.set( rext, rext, dz);
409 }
410 else
411 {
412 G4TwoVector vmin,vmax;
413 G4GeomTools::DiskExtent(rint,rext,
416 vmin,vmax);
417 pMin.set(vmin.x(),vmin.y(),-dz);
418 pMax.set(vmax.x(),vmax.y(), dz);
419 }
420
421 // Check correctness of the bounding box
422 //
423 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
424 {
425 std::ostringstream message;
426 message << "Bad bounding box (min >= max) for solid: "
427 << GetName() << " !"
428 << "\npMin = " << pMin
429 << "\npMax = " << pMax;
430 G4Exception("G4Torus::BoundingLimits()", "GeomMgt0001",
431 JustWarning, message);
432 DumpInfo();
433 }
434}
435
436/////////////////////////////////////////////////////////////////////////////
437//
438// Calculate extent under transform and specified limit
439
441 const G4VoxelLimits& pVoxelLimit,
442 const G4AffineTransform& pTransform,
443 G4double& pMin, G4double& pMax) const
444{
445 G4ThreeVector bmin, bmax;
446 G4bool exist;
447
448 // Get bounding box
449 BoundingLimits(bmin,bmax);
450
451 // Check bounding box
452 G4BoundingEnvelope bbox(bmin,bmax);
453#ifdef G4BBOX_EXTENT
454 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
455#endif
456 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
457 {
458 return exist = (pMin < pMax) ? true : false;
459 }
460
461 // Get parameters of the solid
462 G4double rmin = GetRmin();
463 G4double rmax = GetRmax();
464 G4double rtor = GetRtor();
465 G4double dphi = GetDPhi();
466 G4double sinStart = GetSinStartPhi();
467 G4double cosStart = GetCosStartPhi();
468 G4double sinEnd = GetSinEndPhi();
469 G4double cosEnd = GetCosEndPhi();
470 G4double rint = rtor - rmax;
471 G4double rext = rtor + rmax;
472
473 // Find bounding envelope and calculate extent
474 //
475 static const G4int NPHI = 24; // number of steps for whole torus
476 static const G4int NDISK = 16; // number of steps for disk
477 static const G4double sinHalfDisk = std::sin(pi/NDISK);
478 static const G4double cosHalfDisk = std::cos(pi/NDISK);
479 static const G4double sinStepDisk = 2.*sinHalfDisk*cosHalfDisk;
480 static const G4double cosStepDisk = 1. - 2.*sinHalfDisk*sinHalfDisk;
481
482 G4double astep = (360/NPHI)*deg; // max angle for one slice in phi
483 G4int kphi = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
484 G4double ang = dphi/kphi;
485
486 G4double sinHalf = std::sin(0.5*ang);
487 G4double cosHalf = std::cos(0.5*ang);
488 G4double sinStep = 2.*sinHalf*cosHalf;
489 G4double cosStep = 1. - 2.*sinHalf*sinHalf;
490
491 // define vectors for bounding envelope
492 G4ThreeVectorList pols[NDISK+1];
493 for (G4int k=0; k<NDISK+1; ++k) pols[k].resize(4);
494
495 std::vector<const G4ThreeVectorList *> polygons;
496 polygons.resize(NDISK+1);
497 for (G4int k=0; k<NDISK+1; ++k) polygons[k] = &pols[k];
498
499 // set internal and external reference circles
500 G4TwoVector rzmin[NDISK];
501 G4TwoVector rzmax[NDISK];
502
503 if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+rmin*sinHalfDisk)) rmin = 0;
504 rmax /= cosHalfDisk;
505 G4double sinCurDisk = sinHalfDisk;
506 G4double cosCurDisk = cosHalfDisk;
507 for (G4int k=0; k<NDISK; ++k)
508 {
509 G4double rmincur = rtor + rmin*cosCurDisk;
510 if (cosCurDisk < 0 && rmin > 0) rmincur /= cosHalf;
511 rzmin[k].set(rmincur,rmin*sinCurDisk);
512
513 G4double rmaxcur = rtor + rmax*cosCurDisk;
514 if (cosCurDisk > 0) rmaxcur /= cosHalf;
515 rzmax[k].set(rmaxcur,rmax*sinCurDisk);
516
517 G4double sinTmpDisk = sinCurDisk;
518 sinCurDisk = sinCurDisk*cosStepDisk + cosCurDisk*sinStepDisk;
519 cosCurDisk = cosCurDisk*cosStepDisk - sinTmpDisk*sinStepDisk;
520 }
521
522 // Loop along slices in Phi. The extent is calculated as cumulative
523 // extent of the slices
524 pMin = kInfinity;
525 pMax = -kInfinity;
526 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis);
527 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis);
528 G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = 0, cosCur2 = 0;
529 for (G4int i=0; i<kphi+1; ++i)
530 {
531 if (i == 0)
532 {
533 sinCur1 = sinStart;
534 cosCur1 = cosStart;
535 sinCur2 = sinCur1*cosHalf + cosCur1*sinHalf;
536 cosCur2 = cosCur1*cosHalf - sinCur1*sinHalf;
537 }
538 else
539 {
540 sinCur1 = sinCur2;
541 cosCur1 = cosCur2;
542 sinCur2 = (i == kphi) ? sinEnd : sinCur1*cosStep + cosCur1*sinStep;
543 cosCur2 = (i == kphi) ? cosEnd : cosCur1*cosStep - sinCur1*sinStep;
544 }
545 for (G4int k=0; k<NDISK; ++k)
546 {
547 G4double r1 = rzmin[k].x(), r2 = rzmax[k].x();
548 G4double z1 = rzmin[k].y(), z2 = rzmax[k].y();
549 pols[k][0].set(r1*cosCur1,r1*sinCur1,z1);
550 pols[k][1].set(r2*cosCur1,r2*sinCur1,z2);
551 pols[k][2].set(r2*cosCur2,r2*sinCur2,z2);
552 pols[k][3].set(r1*cosCur2,r1*sinCur2,z1);
553 }
554 pols[NDISK] = pols[0];
555
556 // get bounding box of current slice
557 G4TwoVector vmin,vmax;
559 DiskExtent(rint,rext,sinCur1,cosCur1,sinCur2,cosCur2,vmin,vmax);
560 bmin.setX(vmin.x()); bmin.setY(vmin.y());
561 bmax.setX(vmax.x()); bmax.setY(vmax.y());
562
563 // set bounding envelope for current slice and adjust extent
564 G4double emin,emax;
565 G4BoundingEnvelope benv(bmin,bmax,polygons);
566 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue;
567 if (emin < pMin) pMin = emin;
568 if (emax > pMax) pMax = emax;
569 if (eminlim > pMin && emaxlim < pMax) break; // max possible extent
570 }
571 return (pMin < pMax);
572}
573
574//////////////////////////////////////////////////////////////////////////////
575//
576// Return whether point inside/outside/on surface
577
579{
580 G4double r, pt2, pPhi, tolRMin, tolRMax ;
581
582 EInside in = kOutside ;
583
584 // General precals
585 //
586 r = std::hypot(p.x(),p.y());
587 pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor);
588
589 if (fRmin) tolRMin = fRmin + fRminTolerance ;
590 else tolRMin = 0 ;
591
592 tolRMax = fRmax - fRmaxTolerance;
593
594 if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax )
595 {
596 if ( fDPhi == twopi || pt2 == 0 ) // on torus swept axis
597 {
598 in = kInside ;
599 }
600 else
601 {
602 // Try inner tolerant phi boundaries (=>inside)
603 // if not inside, try outer tolerant phi boundaries
604
605 pPhi = std::atan2(p.y(),p.x()) ;
606
607 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi
608 if ( fSPhi >= 0 )
609 {
610 if ( (std::fabs(pPhi) < halfAngTolerance)
611 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
612 {
613 pPhi += twopi ; // 0 <= pPhi < 2pi
614 }
615 if ( (pPhi >= fSPhi + halfAngTolerance)
616 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) )
617 {
618 in = kInside ;
619 }
620 else if ( (pPhi >= fSPhi - halfAngTolerance)
621 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
622 {
623 in = kSurface ;
624 }
625 }
626 else // fSPhi < 0
627 {
628 if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
629 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;}
630 else
631 {
632 in = kSurface ;
633 }
634 }
635 }
636 }
637 else // Try generous boundaries
638 {
639 tolRMin = fRmin - fRminTolerance ;
640 tolRMax = fRmax + fRmaxTolerance ;
641
642 if (tolRMin < 0 ) { tolRMin = 0 ; }
643
644 if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) )
645 {
646 if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis
647 {
648 in = kSurface ;
649 }
650 else // Try outer tolerant phi boundaries only
651 {
652 pPhi = std::atan2(p.y(),p.x()) ;
653
654 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi
655 if ( fSPhi >= 0 )
656 {
657 if ( (std::fabs(pPhi) < halfAngTolerance)
658 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
659 {
660 pPhi += twopi ; // 0 <= pPhi < 2pi
661 }
662 if ( (pPhi >= fSPhi - halfAngTolerance)
663 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
664 {
665 in = kSurface;
666 }
667 }
668 else // fSPhi < 0
669 {
670 if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
671 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;}
672 else
673 {
674 in = kSurface ;
675 }
676 }
677 }
678 }
679 }
680 return in ;
681}
682
683/////////////////////////////////////////////////////////////////////////////
684//
685// Return unit normal of surface closest to p
686// - note if point on z axis, ignore phi divided sides
687// - unsafe if point close to z axis a rmin=0 - no explicit checks
688
690{
691 G4int noSurfaces = 0;
692 G4double rho, pt, pPhi;
693 G4double distRMin = kInfinity;
694 G4double distSPhi = kInfinity, distEPhi = kInfinity;
695
696 // To cope with precision loss
697 //
698 const G4double delta = std::max(10.0*kCarTolerance,
699 1.0e-8*(fRtor+fRmax));
700 const G4double dAngle = 10.0*kAngTolerance;
701
702 G4ThreeVector nR, nPs, nPe;
703 G4ThreeVector norm, sumnorm(0.,0.,0.);
704
705 rho = std::hypot(p.x(),p.y());
706 pt = std::hypot(p.z(),rho-fRtor);
707
708 G4double distRMax = std::fabs(pt - fRmax);
709 if(fRmin) distRMin = std::fabs(pt - fRmin);
710
711 if( rho > delta && pt != 0.0 )
712 {
713 G4double redFactor= (rho-fRtor)/rho;
714 nR = G4ThreeVector( p.x()*redFactor, // p.x()*(1.-fRtor/rho),
715 p.y()*redFactor, // p.y()*(1.-fRtor/rho),
716 p.z() );
717 nR *= 1.0/pt;
718 }
719
720 if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z)
721 {
722 if ( rho )
723 {
724 pPhi = std::atan2(p.y(),p.x());
725
726 if(pPhi < fSPhi-delta) { pPhi += twopi; }
727 else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; }
728
729 distSPhi = std::fabs( pPhi - fSPhi );
730 distEPhi = std::fabs(pPhi-fSPhi-fDPhi);
731 }
732 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
733 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
734 }
735 if( distRMax <= delta )
736 {
737 ++noSurfaces;
738 sumnorm += nR;
739 }
740 else if( fRmin && (distRMin <= delta) ) // Must not be on both Outer and Inner
741 {
742 ++noSurfaces;
743 sumnorm -= nR;
744 }
745
746 // To be on one of the 'phi' surfaces,
747 // it must be within the 'tube' - with tolerance
748
749 if( (fDPhi < twopi) && (fRmin-delta <= pt) && (pt <= (fRmax+delta)) )
750 {
751 if (distSPhi <= dAngle)
752 {
753 ++noSurfaces;
754 sumnorm += nPs;
755 }
756 if (distEPhi <= dAngle)
757 {
758 ++noSurfaces;
759 sumnorm += nPe;
760 }
761 }
762 if ( noSurfaces == 0 )
763 {
764#ifdef G4CSGDEBUG
766 ed.precision(16);
767
768 EInside inIt= Inside( p );
769
770 if( inIt != kSurface )
771 {
772 ed << " ERROR> Surface Normal was called for Torus,"
773 << " with point not on surface." << G4endl;
774 }
775 else
776 {
777 ed << " ERROR> Surface Normal has not found a surface, "
778 << " despite the point being on the surface. " <<G4endl;
779 }
780
781 if( inIt != kInside)
782 {
783 ed << " Safety (Dist To In) = " << DistanceToIn(p) << G4endl;
784 }
785 if( inIt != kOutside)
786 {
787 ed << " Safety (Dist to Out) = " << DistanceToOut(p) << G4endl;
788 }
789 ed << " Coordinates of point : " << p << G4endl;
790 ed << " Parameters of solid : " << G4endl << *this << G4endl;
791
792 if( inIt == kSurface )
793 {
794 G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
795 JustWarning, ed,
796 "Failing to find normal, even though point is on surface!");
797 }
798 else
799 {
800 static const char* NameInside[3]= { "Inside", "Surface", "Outside" };
801 ed << " The point is " << NameInside[inIt] << " the solid. "<< G4endl;
802 G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
803 JustWarning, ed, "Point p is not on surface !?" );
804 }
805#endif
806 norm = ApproxSurfaceNormal(p);
807 }
808 else if ( noSurfaces == 1 ) { norm = sumnorm; }
809 else { norm = sumnorm.unit(); }
810
811 return norm ;
812}
813
814//////////////////////////////////////////////////////////////////////////////
815//
816// Algorithm for SurfaceNormal() following the original specification
817// for points not on the surface
818
819G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const
820{
821 ENorm side ;
822 G4ThreeVector norm;
823 G4double rho,pt,phi;
824 G4double distRMin,distRMax,distSPhi,distEPhi,distMin;
825
826 rho = std::hypot(p.x(),p.y());
827 pt = std::hypot(p.z(),rho-fRtor);
828
829#ifdef G4CSGDEBUG
830 G4cout << " G4Torus::ApproximateSurfaceNormal called for point " << p
831 << G4endl;
832#endif
833
834 distRMax = std::fabs(pt - fRmax) ;
835
836 if(fRmin) // First minimum radius
837 {
838 distRMin = std::fabs(pt - fRmin) ;
839
840 if (distRMin < distRMax)
841 {
842 distMin = distRMin ;
843 side = kNRMin ;
844 }
845 else
846 {
847 distMin = distRMax ;
848 side = kNRMax ;
849 }
850 }
851 else
852 {
853 distMin = distRMax ;
854 side = kNRMax ;
855 }
856 if ( (fDPhi < twopi) && rho )
857 {
858 phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0)
859
860 if (phi < 0) { phi += twopi ; }
861
862 if (fSPhi < 0 ) { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; }
863 else { distSPhi = std::fabs(phi-fSPhi)*rho ; }
864
865 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
866
867 if (distSPhi < distEPhi) // Find new minimum
868 {
869 if (distSPhi<distMin) side = kNSPhi ;
870 }
871 else
872 {
873 if (distEPhi < distMin) { side = kNEPhi ; }
874 }
875 }
876 switch (side)
877 {
878 case kNRMin: // Inner radius
879 norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt,
880 -p.y()*(1-fRtor/rho)/pt,
881 -p.z()/pt ) ;
882 break ;
883 case kNRMax: // Outer radius
884 norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt,
885 p.y()*(1-fRtor/rho)/pt,
886 p.z()/pt ) ;
887 break;
888 case kNSPhi:
889 norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ;
890 break;
891 case kNEPhi:
892 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ;
893 break;
894 default: // Should never reach this case ...
895 DumpInfo();
896 G4Exception("G4Torus::ApproxSurfaceNormal()",
897 "GeomSolids1002", JustWarning,
898 "Undefined side for valid surface normal to solid.");
899 break ;
900 }
901 return norm ;
902}
903
904///////////////////////////////////////////////////////////////////////
905//
906// Calculate distance to shape from outside, along normalised vector
907// - return kInfinity if no intersection, or intersection distance <= tolerance
908//
909// - Compute the intersection with the z planes
910// - if at valid r, phi, return
911//
912// -> If point is outer outer radius, compute intersection with rmax
913// - if at valid phi,z return
914//
915// -> Compute intersection with inner radius, taking largest +ve root
916// - if valid (phi), save intersction
917//
918// -> If phi segmented, compute intersections with phi half planes
919// - return smallest of valid phi intersections and
920// inner radius intersection
921//
922// NOTE:
923// - Precalculations for phi trigonometry are Done `just in time'
924// - `if valid' implies tolerant checking of intersection points
925
927 const G4ThreeVector& v ) const
928{
929 // Get bounding box of full torus
930 //
931 G4double boxDx = fRtor + fRmax;
932 G4double boxDy = boxDx;
933 G4double boxDz = fRmax;
934 G4double boxMax = boxDx;
935 G4double boxMin = boxDz;
936
937 // Check if point is traveling away
938 //
939 G4double distX = std::abs(p.x()) - boxDx;
940 G4double distY = std::abs(p.y()) - boxDy;
941 G4double distZ = std::abs(p.z()) - boxDz;
942 if (distX >= -halfCarTolerance && p.x()*v.x() >= 0) return kInfinity;
943 if (distY >= -halfCarTolerance && p.y()*v.y() >= 0) return kInfinity;
944 if (distZ >= -halfCarTolerance && p.z()*v.z() >= 0) return kInfinity;
945
946 // Calculate safety distance to bounding box
947 // If point is too far, move it closer and calculate distance
948 //
949 G4double Dmax = 32*boxMax;
950 G4double safe = std::max(std::max(distX,distY),distZ);
951 if (safe > Dmax)
952 {
953 G4double dist = safe - 1.e-8*safe - boxMin; // stay outside after the move
954 dist += DistanceToIn(p + dist*v, v);
955 return (dist >= kInfinity) ? kInfinity : dist;
956 }
957
958 // Find intersection with torus
959 //
960 G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value
961
962 G4double sd[4] ;
963
964 // Precalculated trig for phi intersections - used by r,z intersections to
965 // check validity
966
967 G4bool seg; // true if segmented
968 G4double hDPhi; // half dphi
969 G4double cPhi,sinCPhi=0.,cosCPhi=0.; // central phi
970
971 G4double tolORMin2; // `generous' radii squared
972 G4double tolORMax2;
973
974 G4double Dist,xi,yi,zi,rhoi,it2; // Intersection point variables
975
976 G4double Comp;
977 G4double cosSPhi,sinSPhi; // Trig for phi start intersect
978 G4double ePhi,cosEPhi,sinEPhi; // for phi end intersect
979
980 // Set phi divided flag and precalcs
981 //
982 if ( fDPhi < twopi )
983 {
984 seg = true ;
985 hDPhi = 0.5*fDPhi ; // half delta phi
986 cPhi = fSPhi + hDPhi ;
987 sinCPhi = std::sin(cPhi) ;
988 cosCPhi = std::cos(cPhi) ;
989 }
990 else
991 {
992 seg = false ;
993 }
994
995 if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax
996 {
997 tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ;
998 }
999 else
1000 {
1001 tolORMin2 = 0 ;
1002 }
1003 tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ;
1004
1005 // Intersection with Rmax (possible return) and Rmin (must also check phi)
1006
1007 snxt = SolveNumericJT(p,v,fRmax,true);
1008
1009 if (fRmin) // Possible Rmin intersection
1010 {
1011 sd[0] = SolveNumericJT(p,v,fRmin,true);
1012 if ( sd[0] < snxt ) { snxt = sd[0] ; }
1013 }
1014
1015 //
1016 // Phi segment intersection
1017 //
1018 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1019 //
1020 // o NOTE: Large duplication of code between sphi & ephi checks
1021 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1022 // intersection check <=0 -> >=0
1023 // -> use some form of loop Construct ?
1024
1025 if (seg)
1026 {
1027 sinSPhi = std::sin(fSPhi) ; // First phi surface ('S'tarting phi)
1028 cosSPhi = std::cos(fSPhi) ;
1029 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; // Component in outwards
1030 // normal direction
1031 if (Comp < 0 )
1032 {
1033 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1034
1035 if (Dist < halfCarTolerance)
1036 {
1037 sphi = Dist/Comp ;
1038 if (sphi < snxt)
1039 {
1040 if ( sphi < 0 ) { sphi = 0 ; }
1041
1042 xi = p.x() + sphi*v.x() ;
1043 yi = p.y() + sphi*v.y() ;
1044 zi = p.z() + sphi*v.z() ;
1045 rhoi = std::hypot(xi,yi);
1046 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor);
1047
1048 if ( it2 >= tolORMin2 && it2 <= tolORMax2 )
1049 {
1050 // r intersection is good - check intersecting
1051 // with correct half-plane
1052 //
1053 if ((yi*cosCPhi-xi*sinCPhi)<=0) { snxt=sphi; }
1054 }
1055 }
1056 }
1057 }
1058 ePhi=fSPhi+fDPhi; // Second phi surface ('E'nding phi)
1059 sinEPhi=std::sin(ePhi);
1060 cosEPhi=std::cos(ePhi);
1061 Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);
1062
1063 if ( Comp < 0 ) // Component in outwards normal dirn
1064 {
1065 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1066
1067 if (Dist < halfCarTolerance )
1068 {
1069 sphi = Dist/Comp ;
1070
1071 if (sphi < snxt )
1072 {
1073 if (sphi < 0 ) { sphi = 0 ; }
1074
1075 xi = p.x() + sphi*v.x() ;
1076 yi = p.y() + sphi*v.y() ;
1077 zi = p.z() + sphi*v.z() ;
1078 rhoi = std::hypot(xi,yi);
1079 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor);
1080
1081 if (it2 >= tolORMin2 && it2 <= tolORMax2)
1082 {
1083 // z and r intersections good - check intersecting
1084 // with correct half-plane
1085 //
1086 if ((yi*cosCPhi-xi*sinCPhi)>=0) { snxt=sphi; }
1087 }
1088 }
1089 }
1090 }
1091 }
1092 if(snxt < halfCarTolerance) { snxt = 0.0 ; }
1093
1094 return snxt ;
1095}
1096
1097/////////////////////////////////////////////////////////////////////////////
1098//
1099// Calculate distance (<= actual) to closest surface of shape from outside
1100// - Calculate distance to z, radial planes
1101// - Only to phi planes if outside phi extent
1102// - Return 0 if point inside
1103
1105{
1106 G4double safe=0.0, safe1, safe2 ;
1107 G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ;
1108 G4double rho, pt ;
1109
1110 rho = std::hypot(p.x(),p.y());
1111 pt = std::hypot(p.z(),rho-fRtor);
1112 safe1 = fRmin - pt ;
1113 safe2 = pt - fRmax ;
1114
1115 if (safe1 > safe2) { safe = safe1; }
1116 else { safe = safe2; }
1117
1118 if ( fDPhi < twopi && rho )
1119 {
1120 phiC = fSPhi + fDPhi*0.5 ;
1121 cosPhiC = std::cos(phiC) ;
1122 sinPhiC = std::sin(phiC) ;
1123 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ;
1124
1125 if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point
1126 { // Point lies outside phi range
1127 if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1128 {
1129 safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1130 }
1131 else
1132 {
1133 ePhi = fSPhi + fDPhi ;
1134 safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1135 }
1136 if (safePhi > safe) { safe = safePhi ; }
1137 }
1138 }
1139 if (safe < 0 ) { safe = 0 ; }
1140 return safe;
1141}
1142
1143///////////////////////////////////////////////////////////////////////////
1144//
1145// Calculate distance to surface of shape from `inside', allowing for tolerance
1146// - Only Calc rmax intersection if no valid rmin intersection
1147//
1148
1150 const G4ThreeVector& v,
1151 const G4bool calcNorm,
1152 G4bool* validNorm,
1153 G4ThreeVector* n ) const
1154{
1155 ESide side = kNull, sidephi = kNull ;
1156 G4double snxt = kInfinity, sphi, sd[4] ;
1157
1158 // Vars for phi intersection
1159 //
1160 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi;
1161 G4double cPhi, sinCPhi, cosCPhi ;
1162 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ;
1163
1164 // Radial Intersections Defenitions & General Precals
1165
1166 //////////////////////// new calculation //////////////////////
1167
1168#if 1
1169
1170 // This is the version with the calculation of CalcNorm = true
1171 // To be done: Check the precision of this calculation.
1172 // If you want return always validNorm = false, then take the version below
1173
1174
1175 G4double rho = std::hypot(p.x(),p.y());
1176 G4double pt = hypot(p.z(),rho-fRtor);
1177
1178 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
1179
1180 G4double tolRMax = fRmax - fRmaxTolerance ;
1181
1182 G4double vDotNmax = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ;
1183 G4double pDotxyNmax = (1 - fRtor/rho) ;
1184
1185 if( (pt*pt > tolRMax*tolRMax) && (vDotNmax >= 0) )
1186 {
1187 // On tolerant boundary & heading outwards (or perpendicular to) outer
1188 // radial surface -> leaving immediately with *n for really convex part
1189 // only
1190
1191 if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) )
1192 {
1193 *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt,
1194 p.y()*(1 - fRtor/rho)/pt,
1195 p.z()/pt ) ;
1196 *validNorm = true ;
1197 }
1198
1199 return snxt = 0 ; // Leaving by Rmax immediately
1200 }
1201
1202 snxt = SolveNumericJT(p,v,fRmax,false);
1203 side = kRMax ;
1204
1205 // rmin
1206
1207 if ( fRmin )
1208 {
1209 G4double tolRMin = fRmin + fRminTolerance ;
1210
1211 if ( (pt*pt < tolRMin*tolRMin) && (vDotNmax < 0) )
1212 {
1213 if (calcNorm) { *validNorm = false ; } // Concave surface of the torus
1214 return snxt = 0 ; // Leaving by Rmin immediately
1215 }
1216
1217 sd[0] = SolveNumericJT(p,v,fRmin,false);
1218 if ( sd[0] < snxt )
1219 {
1220 snxt = sd[0] ;
1221 side = kRMin ;
1222 }
1223 }
1224
1225#else
1226
1227 // this is the "conservative" version which return always validnorm = false
1228 // NOTE: using this version the unit test testG4Torus will break
1229
1230 snxt = SolveNumericJT(p,v,fRmax,false);
1231 side = kRMax ;
1232
1233 if ( fRmin )
1234 {
1235 sd[0] = SolveNumericJT(p,v,fRmin,false);
1236 if ( sd[0] < snxt )
1237 {
1238 snxt = sd[0] ;
1239 side = kRMin ;
1240 }
1241 }
1242
1243 if ( calcNorm && (snxt == 0.0) )
1244 {
1245 *validNorm = false ; // Leaving solid, but possible re-intersection
1246 return snxt ;
1247 }
1248
1249#endif
1250
1251 if (fDPhi < twopi) // Phi Intersections
1252 {
1253 sinSPhi = std::sin(fSPhi) ;
1254 cosSPhi = std::cos(fSPhi) ;
1255 ePhi = fSPhi + fDPhi ;
1256 sinEPhi = std::sin(ePhi) ;
1257 cosEPhi = std::cos(ePhi) ;
1258 cPhi = fSPhi + fDPhi*0.5 ;
1259 sinCPhi = std::sin(cPhi) ;
1260 cosCPhi = std::cos(cPhi) ;
1261
1262 // angle calculation with correction
1263 // of difference in domain of atan2 and Sphi
1264 //
1265 vphi = std::atan2(v.y(),v.x()) ;
1266
1267 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; }
1268 else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; }
1269
1270 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1271 {
1272 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside
1273 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1274
1275 // Comp -ve when in direction of outwards normal
1276 //
1277 compS = -sinSPhi*v.x() + cosSPhi*v.y() ;
1278 compE = sinEPhi*v.x() - cosEPhi*v.y() ;
1279 sidephi = kNull ;
1280
1281 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1282 && (pDistE <= halfCarTolerance) ) )
1283 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance)
1284 && (pDistE > halfCarTolerance) ) ) )
1285 {
1286 // Inside both phi *full* planes
1287
1288 if ( compS < 0 )
1289 {
1290 sphi = pDistS/compS ;
1291
1292 if (sphi >= -halfCarTolerance)
1293 {
1294 xi = p.x() + sphi*v.x() ;
1295 yi = p.y() + sphi*v.y() ;
1296
1297 // Check intersecting with correct half-plane
1298 // (if not -> no intersect)
1299 //
1300 if ( (std::fabs(xi)<=kCarTolerance)
1301 && (std::fabs(yi)<=kCarTolerance) )
1302 {
1303 sidephi = kSPhi;
1304 if ( ((fSPhi-halfAngTolerance)<=vphi)
1305 && ((ePhi+halfAngTolerance)>=vphi) )
1306 {
1307 sphi = kInfinity;
1308 }
1309 }
1310 else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1311 {
1312 sphi = kInfinity ;
1313 }
1314 else
1315 {
1316 sidephi = kSPhi ;
1317 }
1318 }
1319 else
1320 {
1321 sphi = kInfinity ;
1322 }
1323 }
1324 else
1325 {
1326 sphi = kInfinity ;
1327 }
1328
1329 if ( compE < 0 )
1330 {
1331 sphi2 = pDistE/compE ;
1332
1333 // Only check further if < starting phi intersection
1334 //
1335 if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) )
1336 {
1337 xi = p.x() + sphi2*v.x() ;
1338 yi = p.y() + sphi2*v.y() ;
1339
1340 if ( (std::fabs(xi)<=kCarTolerance)
1341 && (std::fabs(yi)<=kCarTolerance) )
1342 {
1343 // Leaving via ending phi
1344 //
1345 if( !( (fSPhi-halfAngTolerance <= vphi)
1346 && (ePhi+halfAngTolerance >= vphi) ) )
1347 {
1348 sidephi = kEPhi ;
1349 sphi = sphi2;
1350 }
1351 }
1352 else // Check intersecting with correct half-plane
1353 {
1354 if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1355 {
1356 // Leaving via ending phi
1357 //
1358 sidephi = kEPhi ;
1359 sphi = sphi2;
1360
1361 }
1362 }
1363 }
1364 }
1365 }
1366 else
1367 {
1368 sphi = kInfinity ;
1369 }
1370 }
1371 else
1372 {
1373 // On z axis + travel not || to z axis -> if phi of vector direction
1374 // within phi of shape, Step limited by rmax, else Step =0
1375
1376 vphi = std::atan2(v.y(),v.x());
1377
1378 if ( ( fSPhi-halfAngTolerance <= vphi ) &&
1379 ( vphi <= ( ePhi+halfAngTolerance ) ) )
1380 {
1381 sphi = kInfinity;
1382 }
1383 else
1384 {
1385 sidephi = kSPhi ; // arbitrary
1386 sphi=0;
1387 }
1388 }
1389
1390 // Order intersections
1391
1392 if (sphi<snxt)
1393 {
1394 snxt=sphi;
1395 side=sidephi;
1396 }
1397 }
1398
1399 G4double rhoi,it,iDotxyNmax ;
1400 // Note: by numerical computation we know where the ray hits the torus
1401 // So I propose to return the side where the ray hits
1402
1403 if (calcNorm)
1404 {
1405 switch(side)
1406 {
1407 case kRMax: // n is unit vector
1408 xi = p.x() + snxt*v.x() ;
1409 yi = p.y() + snxt*v.y() ;
1410 zi = p.z() + snxt*v.z() ;
1411 rhoi = std::hypot(xi,yi);
1412 it = hypot(zi,rhoi-fRtor);
1413
1414 iDotxyNmax = (1-fRtor/rhoi) ;
1415 if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax
1416 {
1417 *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it,
1418 yi*(1-fRtor/rhoi)/it,
1419 zi/it ) ;
1420 *validNorm = true ;
1421 }
1422 else
1423 {
1424 *validNorm = false ; // concave-convex part of Rmax
1425 }
1426 break ;
1427
1428 case kRMin:
1429 *validNorm = false ; // Rmin is concave or concave-convex
1430 break;
1431
1432 case kSPhi:
1433 if (fDPhi <= pi )
1434 {
1435 *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
1436 *validNorm=true;
1437 }
1438 else
1439 {
1440 *validNorm = false ;
1441 }
1442 break ;
1443
1444 case kEPhi:
1445 if (fDPhi <= pi)
1446 {
1447 *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
1448 *validNorm=true;
1449 }
1450 else
1451 {
1452 *validNorm = false ;
1453 }
1454 break;
1455
1456 default:
1457
1458 // It seems we go here from time to time ...
1459
1460 G4cout << G4endl;
1461 DumpInfo();
1462 std::ostringstream message;
1463 G4int oldprc = message.precision(16);
1464 message << "Undefined side for valid surface normal to solid."
1465 << G4endl
1466 << "Position:" << G4endl << G4endl
1467 << "p.x() = " << p.x()/mm << " mm" << G4endl
1468 << "p.y() = " << p.y()/mm << " mm" << G4endl
1469 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl
1470 << "Direction:" << G4endl << G4endl
1471 << "v.x() = " << v.x() << G4endl
1472 << "v.y() = " << v.y() << G4endl
1473 << "v.z() = " << v.z() << G4endl << G4endl
1474 << "Proposed distance :" << G4endl << G4endl
1475 << "snxt = " << snxt/mm << " mm" << G4endl;
1476 message.precision(oldprc);
1477 G4Exception("G4Torus::DistanceToOut(p,v,..)",
1478 "GeomSolids1002",JustWarning, message);
1479 break;
1480 }
1481 }
1482 if ( snxt<halfCarTolerance ) { snxt=0 ; }
1483
1484 return snxt;
1485}
1486
1487/////////////////////////////////////////////////////////////////////////
1488//
1489// Calculate distance (<=actual) to closest surface of shape from inside
1490
1492{
1493 G4double safe=0.0,safeR1,safeR2;
1494 G4double rho,pt ;
1495 G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;
1496
1497 rho = std::hypot(p.x(),p.y());
1498 pt = std::hypot(p.z(),rho-fRtor);
1499
1500#ifdef G4CSGDEBUG
1501 if( Inside(p) == kOutside )
1502 {
1503 G4int oldprc = G4cout.precision(16) ;
1504 G4cout << G4endl ;
1505 DumpInfo();
1506 G4cout << "Position:" << G4endl << G4endl ;
1507 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
1508 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
1509 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
1510 G4cout.precision(oldprc);
1511 G4Exception("G4Torus::DistanceToOut(p)", "GeomSolids1002",
1512 JustWarning, "Point p is outside !?" );
1513 }
1514#endif
1515
1516 if (fRmin)
1517 {
1518 safeR1 = pt - fRmin ;
1519 safeR2 = fRmax - pt ;
1520
1521 if (safeR1 < safeR2) { safe = safeR1 ; }
1522 else { safe = safeR2 ; }
1523 }
1524 else
1525 {
1526 safe = fRmax - pt ;
1527 }
1528
1529 // Check if phi divided, Calc distances closest phi plane
1530 //
1531 if (fDPhi < twopi) // Above/below central phi of Torus?
1532 {
1533 phiC = fSPhi + fDPhi*0.5 ;
1534 cosPhiC = std::cos(phiC) ;
1535 sinPhiC = std::sin(phiC) ;
1536
1537 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
1538 {
1539 safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1540 }
1541 else
1542 {
1543 ePhi = fSPhi + fDPhi ;
1544 safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1545 }
1546 if (safePhi < safe) { safe = safePhi ; }
1547 }
1548 if (safe < 0) { safe = 0 ; }
1549 return safe ;
1550}
1551
1552//////////////////////////////////////////////////////////////////////////
1553//
1554// Stream object contents to an output stream
1555
1557{
1558 return G4String("G4Torus");
1559}
1560
1561//////////////////////////////////////////////////////////////////////////
1562//
1563// Make a clone of the object
1564//
1566{
1567 return new G4Torus(*this);
1568}
1569
1570//////////////////////////////////////////////////////////////////////////
1571//
1572// Stream object contents to an output stream
1573
1574std::ostream& G4Torus::StreamInfo( std::ostream& os ) const
1575{
1576 G4int oldprc = os.precision(16);
1577 os << "-----------------------------------------------------------\n"
1578 << " *** Dump for solid - " << GetName() << " ***\n"
1579 << " ===================================================\n"
1580 << " Solid type: G4Torus\n"
1581 << " Parameters: \n"
1582 << " inner radius: " << fRmin/mm << " mm \n"
1583 << " outer radius: " << fRmax/mm << " mm \n"
1584 << " swept radius: " << fRtor/mm << " mm \n"
1585 << " starting phi: " << fSPhi/degree << " degrees \n"
1586 << " delta phi : " << fDPhi/degree << " degrees \n"
1587 << "-----------------------------------------------------------\n";
1588 os.precision(oldprc);
1589
1590 return os;
1591}
1592
1593////////////////////////////////////////////////////////////////////////////
1594//
1595// GetPointOnSurface
1596
1598{
1599 G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand;
1600
1601 phi = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi);
1602 theta = G4RandFlat::shoot(0.,twopi);
1603
1604 cosu = std::cos(phi); sinu = std::sin(phi);
1605 cosv = std::cos(theta); sinv = std::sin(theta);
1606
1607 // compute the areas
1608
1609 aOut = (fDPhi)*twopi*fRtor*fRmax;
1610 aIn = (fDPhi)*twopi*fRtor*fRmin;
1611 aSide = pi*(fRmax*fRmax-fRmin*fRmin);
1612
1613 if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; }
1614 chose = G4RandFlat::shoot(0.,aOut + aIn + 2.*aSide);
1615
1616 if(chose < aOut)
1617 {
1618 return G4ThreeVector ((fRtor+fRmax*cosv)*cosu,
1619 (fRtor+fRmax*cosv)*sinu, fRmax*sinv);
1620 }
1621 else if( (chose >= aOut) && (chose < aOut + aIn) )
1622 {
1623 return G4ThreeVector ((fRtor+fRmin*cosv)*cosu,
1624 (fRtor+fRmin*cosv)*sinu, fRmin*sinv);
1625 }
1626 else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) )
1627 {
1628 rRand = GetRadiusInRing(fRmin,fRmax);
1629 return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi),
1630 (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv);
1631 }
1632 else
1633 {
1634 rRand = GetRadiusInRing(fRmin,fRmax);
1635 return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi),
1636 (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi),
1637 rRand*sinv);
1638 }
1639}
1640
1641///////////////////////////////////////////////////////////////////////
1642//
1643// Visualisation Functions
1644
1646{
1647 scene.AddSolid (*this);
1648}
1649
1651{
1652 return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi);
1653}
1654
1655#endif // !defined(G4GEOM_USE_TORUS) || !defined(G4GEOM_USE_SYS_USOLIDS)
std::vector< G4ThreeVector > G4ThreeVectorList
ENorm
Definition: G4Cons.cc:65
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double x() const
double y() const
void set(double x, double y)
double z() const
Hep3Vector unit() const
double x() const
void setY(double)
double y() const
void set(double x, double y, double z)
void setX(double)
G4bool BoundingBoxVsVoxelLimits(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
G4double fSurfaceArea
Definition: G4CSGSolid.hh:71
G4double fCubicVolume
Definition: G4CSGSolid.hh:70
G4bool fRebuildPolyhedron
Definition: G4CSGSolid.hh:72
G4double GetRadiusInRing(G4double rmin, G4double rmax) const
Definition: G4CSGSolid.cc:109
G4CSGSolid & operator=(const G4CSGSolid &rhs)
Definition: G4CSGSolid.cc:89
static G4bool DiskExtent(G4double rmin, G4double rmax, G4double startPhi, G4double delPhi, G4TwoVector &pmin, G4TwoVector &pmax)
Definition: G4GeomTools.cc:390
G4double GetRadialTolerance() const
static G4GeometryTolerance * GetInstance()
G4double GetAngularTolerance() const
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)
EInside Inside(const G4ThreeVector &p) const
Definition: G4Torus.cc:578
G4Torus & operator=(const G4Torus &rhs)
Definition: G4Torus.cc:199
G4GeometryType GetEntityType() const
Definition: G4Torus.cc:1556
~G4Torus()
Definition: G4Torus.cc:178
G4double GetSinEndPhi() const
G4VSolid * Clone() const
Definition: G4Torus.cc:1565
void BoundingLimits(G4ThreeVector &pMin, G4ThreeVector &pMax) const
Definition: G4Torus.cc:395
G4double GetDPhi() const
G4double GetRmin() const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
Definition: G4Torus.cc:440
void SetAllParameters(G4double pRmin, G4double pRmax, G4double pRtor, G4double pSPhi, G4double pDPhi)
Definition: G4Torus.cc:81
void ComputeDimensions(G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep)
Definition: G4Torus.cc:226
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const
Definition: G4Torus.cc:689
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
Definition: G4Torus.cc:926
G4ThreeVector GetPointOnSurface() const
Definition: G4Torus.cc:1597
G4double GetRtor() const
void DescribeYourselfTo(G4VGraphicsScene &scene) const
Definition: G4Torus.cc:1645
std::ostream & StreamInfo(std::ostream &os) const
Definition: G4Torus.cc:1574
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=nullptr, G4ThreeVector *n=nullptr) const
Definition: G4Torus.cc:1149
G4Torus(const G4String &pName, G4double pRmin, G4double pRmax, G4double pRtor, G4double pSPhi, G4double pDPhi)
Definition: G4Torus.cc:65
G4double GetRmax() const
G4double GetCosStartPhi() const
G4double GetCosEndPhi() const
G4Polyhedron * CreatePolyhedron() const
Definition: G4Torus.cc:1650
G4double GetSinStartPhi() const
virtual void AddSolid(const G4Box &)=0
virtual void ComputeDimensions(G4Box &, const G4int, const G4VPhysicalVolume *) const
G4String GetName() const
void DumpInfo() const
G4double kCarTolerance
Definition: G4VSolid.hh:302
G4double GetMinExtent(const EAxis pAxis) const
G4double GetMaxExtent(const EAxis pAxis) const
EAxis
Definition: geomdefs.hh:54
EInside
Definition: geomdefs.hh:67
@ kInside
Definition: geomdefs.hh:70
@ kOutside
Definition: geomdefs.hh:68
@ kSurface
Definition: geomdefs.hh:69
Definition: DoubConv.h:17